bibtype J - Journal Article
ARLID 0446857
utime 20240103210501.5
mtime 20150904235959.9
WOS 000356993100007
SCOPUS 84938592517
DOI 10.3150/14-BEJ610
title (primary) (eng) Local bilinear multiple-output quantile/depth regression
specification
page_count 32 s.
media_type P
serial
ARLID cav_un_epca*0252218
ISSN 1350-7265
title Bernoulli
volume_id 21
volume 3 (2015)
page_num 1435-1466
publisher
name International Statistical Institute
keyword conditional depth
keyword growth chart
keyword halfspace depth
keyword local bilinear regression
keyword multivariate quantile
keyword quantile regression
keyword regression depth
author (primary)
ARLID cav_un_auth*0280802
name1 Hallin
name2 M.
country BE
author
ARLID cav_un_auth*0319159
name1 Lu
name2 Z.
country GB
author
ARLID cav_un_auth*0274302
name1 Paindaveine
name2 D.
country BE
author
ARLID cav_un_auth*0266474
name1 Šiman
name2 Miroslav
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/SI/siman-0446857.pdf
cas_special
project
project_id 1M06047
agency GA MŠk
country CZ
ARLID cav_un_auth*0217941
abstract (eng) A new quantile regression concept, based on a directional version of Koenker and Bassett's traditional single-output one, has been introduced in [Ann. Statist. (2010) 38 635-669] for multiple-output location/linear regression problems. The polyhedral contours provided by the empirical counterpart of that concept, however, cannot adapt to unknown nonlinear and/or heteroskedastic dependencies. This paper therefore introduces local constant and local linear (actually, bilinear) versions of those contours, which both allow to asymptotically recover the conditional halfspace depth contours that completely characterize the response's conditional distributions. Bahadur representation and asymptotic normality results are established. Illustrations are provided both on simulated and real data.
reportyear 2016
RIV BA
mrcbC52 4 A hod 4ah 20231122141116.4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0248946
cooperation
ARLID cav_un_auth*0319160
name Universite libre de Bruxelles
country BE
cooperation
ARLID cav_un_auth*0309080
name Princeton University
country US
cooperation
ARLID cav_un_auth*0319161
name University of Southampton
country GB
mrcbC64 1 Department of Stochastic Informatics UTIA-B 10103 STATISTICS & PROBABILITY
confidential S
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 1.692
mrcbT16-s 2.115
mrcbT16-4 Q1
mrcbT16-B 81.674
mrcbT16-C 70.325
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2015
mrcbTft \nSoubory v repozitáři: siman-0446857.pdf
mrcbU14 84938592517 SCOPUS
mrcbU34 000356993100007 WOS
mrcbU63 cav_un_epca*0252218 Bernoulli 1350-7265 1573-9759 Roč. 21 č. 3 2015 1435 1466 International Statistical Institute