bibtype C - Conference Paper (international conference)
ARLID 0447048
utime 20240103210528.2
mtime 20150922235959.9
WOS 000364705500025
SCOPUS 84945926595
DOI 10.1007/978-3-319-23192-1_25
title (primary) (eng) Wood Veneer Species Recognition using Markovian Textural Features
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0447047
ISBN 978-3-319-23192-1
ISSN 0302-9743
title Computer Analysis of Images and Patterns - CAIP 2015
part_num I
part_title 9256
page_num 300-311
publisher
place Switzerland
name Springer International Publishing
year 2015
editor
name1 Azzopardi
name2 George
editor
name1 Petkov
name2 Nicolai
keyword Wood recognition
keyword Textural features
keyword Illumination invariants
keyword Surface reflectance field
keyword Bidirectional texture function
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213290
name1 Vácha
name2 Pavel
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/RO/haindl-0447048.pdf
cas_special
project
project_id GA14-10911S
agency GA ČR
country CZ
ARLID cav_un_auth*0303439
abstract (eng) A mobile Android application that can automatically recognize wood species from a low quality mobile phone photo under varying illumination conditions is presented. The wood recognition is based on the Markovian, spectral, and illumination invariant textural features. The method performance was verified on a wood database, which contains veneers from sixty-six varied European and exotic wood species. The Markovian features improvement of the correct wood recognition rate is about 40 % compared to the best alternative - the Local Binary Patterns features.
action
ARLID cav_un_auth*0319317
name 16th International Conference on Computer Analysis of Images and Patterns
place Valletta
dates 02.09.2015-04.09.2015
country MT
reportyear 2016
RIV BD
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0249423
confidential S
mrcbT16-s 0.329
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2015
mrcbU14 84945926595 SCOPUS
mrcbU34 000364705500025 WOS
mrcbU63 cav_un_epca*0447047 Computer Analysis of Images and Patterns - CAIP 2015 I 978-3-319-23192-1 0302-9743 300 311 Computer Analysis of Images and Patterns - CAIP 2015 Switzerland Springer International Publishing 2015 Lecture Notes in Computer Science 9256
mrcbU67 Azzopardi George 340
mrcbU67 Petkov Nicolai 340