bibtype C - Conference Paper (international conference)
ARLID 0447092
utime 20240103210533.2
mtime 20150910235959.9
SCOPUS 84944703922
WOS 000363785500041
DOI 10.1007/978-3-319-22482-4_41
title (primary) (eng) Bayesian Blind Source Separation with Unknown Prior Covariance
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0447151
ISBN 978-3-319-22481-7
ISSN 0302-9743
title Latent Variable Analysis and Signal Separation
page_num 352-359
publisher
place Cham
name Springer
year 2015
editor
name1 Vincent
name2 E.
editor
name1 Yeredor
name2 A.
editor
name1 Koldovský
name2 Z.
editor
name1 Tichavský
name2 P.
keyword Blind source separation
keyword Covariance model
keyword Variational Bayes approximation
keyword Non-negative matrix factorization
author (primary)
ARLID cav_un_auth*0267768
name1 Tichý
name2 Ondřej
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/AS/tichy-0447092.pdf
cas_special
project
project_id GA13-29225S
agency GA ČR
ARLID cav_un_auth*0292734
abstract (eng) The task of blind source separation (BSS) is to recover original signal sources which are observed only via their superposition with unknown weights. Since we are interested in estimation of the number of relevant sources in noisy observation, we use the Bayesian formulation which automatically removes spurious sources. A tool for this behavior is joint estimation of the unknown prior covariance matrix of the sources in tandem with the sources. In this work, we study the effect of various choices of the covariance matrix structure. Specifically, we compare models using the automatic relevance determination (ARD) principle on the first and the second diagonal, as well as full covariance matrix with Wishart prior. We obtain five versions of the variational BSS algorithm. These are tested on synthetic data and on a selected dataset from dynamic renal scintigraphy. MATLAB implementation of the methods is available for download.
action
ARLID cav_un_auth*0319340
name 12th International Conference on Latent Variable Analysis and Signal Separation
place Liberec
dates 25.08.2015-28.08.2015
country CZ
reportyear 2016
RIV BB
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0249081
confidential S
mrcbT16-s 0.329
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2015
mrcbU14 84944703922 SCOPUS
mrcbU34 000363785500041 WOS
mrcbU63 cav_un_epca*0447151 Latent Variable Analysis and Signal Separation 978-3-319-22481-7 0302-9743 352 359 Cham Springer 2015 Lecture Notes in Computer Science 9237
mrcbU67 Vincent E. 340
mrcbU67 Yeredor A. 340
mrcbU67 Koldovský Z. 340
mrcbU67 Tichavský P. 340