bibtype J - Journal Article
ARLID 0447119
utime 20240103210535.8
mtime 20150910235959.9
WOS 000363348400013
SCOPUS 84943770986
DOI 10.1016/j.ins.2015.07.038
title (primary) (eng) Recursive estimation of high-order Markov chains: Approximation by finite mixtures
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0256752
ISSN 0020-0255
title Information Sciences
volume_id 326
volume 1 (2016)
page_num 188-201
publisher
name Elsevier
keyword Markov chain
keyword Approximate parameter estimation
keyword Bayesian recursive estimation
keyword Adaptive systems
keyword Kullback–Leibler divergence
keyword Forgetting
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
share 100
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/AS/karny-0447119.pdf
cas_special
project
project_id GA13-13502S
agency GA ČR
ARLID cav_un_auth*0292725
abstract (eng) A high-order Markov chain is a universal model of stochastic relations between discrete-valued variables. The exact estimation of its transition probabilities suffers from the curse of dimensionality. It requires an excessive amount of informative observations as well as an extreme memory for storing the corresponding sufficient statistic. The paper bypasses this problem by considering a rich subset of Markov-chain models, namely, mixtures of low dimensional Markov chains, possibly with external variables. It uses Bayesian approximate estimation suitable for a subsequent decision making under uncertainty. The proposed recursive (sequential, one-pass) estimator updates a product of Dirichlet probability densities (pds) used as an approximate posterior pd, projects the result back to this class of pds and applies an improved data-dependent stabilised forgetting, which counteracts the dangerous accumulation of approximation errors.
reportyear 2016
RIV BC
num_of_auth 1
mrcbC52 4 A hod 4ah 20231122141128.6
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0249079
mrcbC64 1 Department of Adaptive Systems UTIA-B 10200 COMPUTER SCIENCE, INFORMATION SYSTEMS
confidential S
mrcbC86 2 Article Computer Science Information Systems
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS
mrcbT16-j 1.09
mrcbT16-s 1.781
mrcbT16-4 Q1
mrcbT16-B 80.37
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2016
mrcbTft \nSoubory v repozitáři: karny-0447119.pdf
mrcbU14 84943770986 SCOPUS
mrcbU34 000363348400013 WOS
mrcbU63 cav_un_epca*0256752 Information Sciences 0020-0255 1872-6291 Roč. 326 č. 1 2016 188 201 Elsevier