bibtype C - Conference Paper (international conference)
ARLID 0447197
utime 20240111140907.2
mtime 20150925235959.9
SCOPUS 84944706004
WOS 000363785500004
DOI 10.1007/978-3-319-22482-4_4
title (primary) (eng) Rank Splitting for CANDECOMP/PARAFAC
specification
page_count 10 s.
media_type C
serial
ARLID cav_un_epca*0447195
ISBN 978-3-319-22482-4
ISSN 0302-9743
title Latent Variable Analysis and Signal Separation
page_num 31-40
publisher
place Heidelberg
name Springer
year 2015
editor
name1 Vincent
name2 Emmanuel
editor
name1 Yeredor
name2 Arie
editor
name1 Koldovský
name2 Zbyněk
editor
name1 Tichavský
name2 Petr
keyword Canonical polyadic decomposition
keyword PARAFAC
keyword deflation
author (primary)
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2015/SI/tichavsky-0447197.pdf
source_size 365 kB
cas_special
project
project_id GA14-13713S
agency GA ČR
country CZ
ARLID cav_un_auth*0303443
abstract (eng) CANDECOMP/PARAFAC (CP) approximates multiway data by a sum of rank-1 tensors. Our recent study has presented a method to rank-1 tensor deflation, i.e. sequential extraction of rank-1 tensor components. In this paper, we extend the method to block deflation problem. When at least two factor matrices have full column rank, one can extract two rank-1 tensors simultaneously, and rank of the data tensor is reduced by 2. For decomposition of order-3 tensors of size R×R×R and rank-R, the block deflation has a complexity of O(R^3) per iteration which is lower than the cost O(R^4) of the ALS algorithm for the overall CP decomposition.
action
ARLID cav_un_auth*0319419
name Latent Variable Analysis and Signal Separation 12th International Conference, LVA/ICA 2015
place Liberec
dates 25.08.2015-28.08.2015
country CZ
reportyear 2016
RIV BB
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0249578
confidential S
mrcbT16-s 0.329
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2015
mrcbU14 84944706004 SCOPUS
mrcbU34 000363785500004 WOS
mrcbU56 365 kB
mrcbU63 cav_un_epca*0447195 Latent Variable Analysis and Signal Separation 978-3-319-22482-4 0302-9743 31 40 Heidelberg Springer 2015 LNCS 9237 Lecture Notes in Computer Science
mrcbU67 Vincent Emmanuel 340
mrcbU67 Yeredor Arie 340
mrcbU67 Koldovský Zbyněk 340
mrcbU67 Tichavský Petr 340