bibtype C - Conference Paper (international conference)
ARLID 0447803
utime 20240103210657.4
mtime 20150925235959.9
WOS 000380563100006
DOI 10.1007/978-3-0348-0909-2_6
title (primary) (eng) Stochastic Geometric Wave Equations
specification
page_count 32 s.
media_type P
serial
ARLID cav_un_epca*0447805
ISBN 978-3-0348-0908-5
ISSN 1050-6977
title Stochastic Analysis: A Series of Lectures
page_num 157-188
publisher
place Cham
name Springer
year 2015
keyword Stochastic wave equation
keyword Riemannian manifold
keyword homogeneous space
author (primary)
ARLID cav_un_auth*0202382
name1 Brzezniak
name2 Z.
country GB
author
ARLID cav_un_auth*0260292
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
name1 Ondreját
name2 Martin
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/SI/ondrejat-0447803.pdf
cas_special
project
ARLID cav_un_auth*0263519
project_id GAP201/10/0752
agency GA ČR
research CEZ:AV0Z10750506
abstract (eng) In these lecture notes we have attempted to elucidate the ideas behind the proof of the global existence of solutions to stochastic geometric wave equations whose solutions take values in a special class of Riemannian manifolds (which includes the two-dimensional sphere) published recently by the authors, see [10]. In particular, we aimed at those readers who could be frightened by the language of differential geometry.
action
ARLID cav_un_auth*0319959
name Stochastic analysis and applications at the Centre Interfacultaire Bernoulli, Ecole Polytechnique Fédérale de Lausanne
dates 09.01.2012-29.6.2012
place Lausanne
country CH
RIV BA
reportyear 2016
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0249581
confidential S
arlyear 2015
mrcbU34 000380563100006 WOS
mrcbU63 cav_un_epca*0447805 Stochastic Analysis: A Series of Lectures 978-3-0348-0908-5 1050-6977 157 188 Cham Springer 2015 Progress in Probability 68