bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0447803 |
utime |
20240103210657.4 |
mtime |
20150925235959.9 |
WOS |
000380563100006 |
DOI |
10.1007/978-3-0348-0909-2_6 |
title
(primary) (eng) |
Stochastic Geometric Wave Equations |
specification |
page_count |
32 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0447805 |
ISBN |
978-3-0348-0908-5 |
ISSN |
1050-6977 |
title
|
Stochastic Analysis: A Series of Lectures |
page_num |
157-188 |
publisher |
place |
Cham |
name |
Springer |
year |
2015 |
|
|
keyword |
Stochastic wave equation |
keyword |
Riemannian manifold |
keyword |
homogeneous space |
author
(primary) |
ARLID |
cav_un_auth*0202382 |
name1 |
Brzezniak |
name2 |
Z. |
country |
GB |
|
author
|
ARLID |
cav_un_auth*0260292 |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
full_dept |
Department of Stochastic Informatics |
name1 |
Ondreját |
name2 |
Martin |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0263519 |
project_id |
GAP201/10/0752 |
agency |
GA ČR |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
In these lecture notes we have attempted to elucidate the ideas behind the proof of the global existence of solutions to stochastic geometric wave equations whose solutions take values in a special class of Riemannian manifolds (which includes the two-dimensional sphere) published recently by the authors, see [10]. In particular, we aimed at those readers who could be frightened by the language of differential geometry. |
action |
ARLID |
cav_un_auth*0319959 |
name |
Stochastic analysis and applications at the Centre Interfacultaire Bernoulli, Ecole Polytechnique Fédérale de Lausanne |
dates |
09.01.2012-29.6.2012 |
place |
Lausanne |
country |
CH |
|
RIV |
BA |
reportyear |
2016 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0249581 |
confidential |
S |
arlyear |
2015 |
mrcbU34 |
000380563100006 WOS |
mrcbU63 |
cav_un_epca*0447805 Stochastic Analysis: A Series of Lectures 978-3-0348-0908-5 1050-6977 157 188 Cham Springer 2015 Progress in Probability 68 |
|