bibtype J - Journal Article
ARLID 0447835
utime 20240103210701.4
mtime 20150929235959.9
WOS 000382137200008
SCOPUS 84944564373
DOI 10.1007/s10543-015-0581-x
title (primary) (eng) Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems
specification
page_count 27 s.
media_type P
serial
ARLID cav_un_epca*0256291
ISSN 0006-3835
title Bit
volume_id 56
volume 3 (2016)
page_num 967-993
publisher
name Springer
keyword Domain decomposition
keyword Additive Schwarz method
keyword Finite volume element
keyword GMRES
author (primary)
ARLID cav_un_auth*0319983
name1 Marcinkowski
name2 L.
country PL
author
ARLID cav_un_auth*0319984
name1 Rahman
name2 T.
country NO
author
ARLID cav_un_auth*0319985
name1 Loneland
name2 A.
country NO
author
ARLID cav_un_auth*0292941
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
name1 Valdman
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/MTR/valdman-0447835.pdf
cas_special
project
ARLID cav_un_auth*0292653
project_id GA13-18652S
agency GA ČR
abstract (eng) A symmetric and a nonsymmetric variant of the additive Schwarz preconditioner are proposed for the solution of a class of finite volume element discretization of the symmetric elliptic problem in two dimensions, with large jumps in the entries of the coefficient matrices across subdomains. It is shown that the convergence of the preconditioned generalized minimal residual iteration using the proposed preconditioners depends polylogarithmically, in other words weakly, on the mesh parameters, and that they are robust with respect to the jumps in the coefficients.
RIV BA
reportyear 2017
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0249607
cooperation
ARLID cav_un_auth*0297789
name Jihočeská univerzita v Českých Budějovicích, Přírodovědecká fakulta
country CZ
confidential S
mrcbC86 3+4 Article Computer Science Software Engineering|Mathematics Applied
mrcbT16-e COMPUTERSCIENCESOFTWAREENGINEERING|MATHEMATICSAPPLIED
mrcbT16-j 1.064
mrcbT16-s 1.554
mrcbT16-4 Q1
mrcbT16-B 80.832
mrcbT16-D Q1
mrcbT16-E Q1*
arlyear 2016
mrcbU14 84944564373 SCOPUS
mrcbU34 000382137200008 WOS
mrcbU63 cav_un_epca*0256291 Bit 0006-3835 1572-9125 Roč. 56 č. 3 2016 967 993 Springer