bibtype J - Journal Article
ARLID 0447994
utime 20240903170633.2
mtime 20151015235959.9
WOS 000361266300005
SCOPUS 84940041736
DOI 10.14736/kyb-2015-3-0433
title (primary) (eng) Thin and heavy tails in stochastic programming
specification
page_count 24 s.
media_type P
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 51
volume 3 (2015)
page_num 433-456
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword stochastic programming problems
keyword stability
keyword Wasserstein metric
keyword L1 norm
keyword Lipschitz property
keyword empirical estimates
keyword convergence rate
keyword linear and nonlinear dependence
keyword probability and risk constraints
keyword stochastic dominance
author (primary)
ARLID cav_un_auth*0101122
name1 Kaňková
name2 Vlasta
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Econometrics
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0108104
name1 Houda
name2 Michal
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/E/kankova-0447994.pdf
cas_special
project
project_id GA13-14445S
agency GA ČR
ARLID cav_un_auth*0292652
abstract (eng) Optimization problems depending on a probability measure correspond to many applications. These problems can be static (single-stage), dynamic with finite (multi-stage) or infinite horizon, single- or multi-objective. It is necessary to have complete knowledge of the underlying probability measure if we are to solve the above-mentioned problems with precision. However this assumption is very rarely fulfilled (in applications) and consequently, problems have to be solved mostly on the basis of data. Stochastic estimates of an optimal value and an optimal solution can only be obtained using this approach. Properties of these estimates have been investigated many times. In this paper we intend to study one-stage problems under unusual (corresponding to reality, however) assumptions. In particular, we try to compare the achieved results under the assumptions of thin and heavy tails in the case of problems with linear and nonlinear dependence on the probability measure, problems with probability and risk measure constraints, and the case of stochastic dominance constraints.
reportyear 2016
RIV BB
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0250230
confidential S
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-j 0.305
mrcbT16-s 0.321
mrcbT16-4 Q2
mrcbT16-B 30.893
mrcbT16-C 11.364
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2015
mrcbU14 84940041736 SCOPUS
mrcbU34 000361266300005 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 51 č. 3 2015 433 456 Ústav teorie informace a automatizace AV ČR, v. v. i.