bibtype C - Conference Paper (international conference)
ARLID 0448117
utime 20240111140908.0
mtime 20151119235959.9
SCOPUS 84957604223
WOS 000380403500025
DOI 10.1109/IDAACS.2015.7340715
title (primary) (eng) Recursive Estimation of Mixtures of Exponential and Normal Distributions
specification
page_count 6 s.
media_type C
serial
ARLID cav_un_epca*0448116
ISBN 978-1-4673-8361-5
title Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)
page_num 137-142
publisher
place Piscataway
name IEEE
year 2015
keyword recursive mixture estimation
keyword mixture of different distributions
keyword dynamic switching model
keyword exponential distribution
author (primary)
ARLID cav_un_auth*0108105
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
name1 Suzdaleva
name2 Evgenia
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
name1 Nagy
name2 Ivan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274528
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
name1 Mlynářová
name2 Tereza
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2015/ZS/suzdaleva-0448117.pdf
cas_special
project
ARLID cav_un_auth*0308433
project_id 7H14005
agency GA MŠk
country BE
project
ARLID cav_un_auth*0306850
project_id 7H14004
agency GA MŠk
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
country CZ
abstract (eng) The paper deals with estimation of a mixture of normal and exponential distributions with the dynamic model of their switching. A separate estimation of normal or exponential mixtures is solved by various approaches in many papers over the world. However, in some application areas, data are of such a nature that they should be described by a combination of exponential and normal models. The paper proposes a recursive Bayesian algorithm of estimation of such a mixture based on continuously measured data. Specific tasks the paper solves are: (i) parameter estimation of both the types of components; (ii) parameter estimation of the dynamic switching model and (iii) detection of the currently active component. Results of experiments with real data are demonstrated.
action
ARLID cav_un_auth*0320279
name International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications /8./ (IDAACS'2015)
dates 24.09.2015-26.09.2015
place Warsaw
country PL
RIV BB
reportyear 2016
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0250068
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods|Engineering Electrical Electronic
arlyear 2015
mrcbU14 84957604223 SCOPUS
mrcbU34 000380403500025 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0448116 Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) 978-1-4673-8361-5 137 142 Piscataway IEEE 2015