bibtype |
J -
Journal Article
|
ARLID |
0448255 |
utime |
20240103210755.4 |
mtime |
20151022235959.9 |
SCOPUS |
84944696619 |
WOS |
000362746500004 |
DOI |
10.1109/TSP.2015.2458785 |
title
(primary) (eng) |
Tensor Deflation for CANDECOMP/PARAFAC - Part I: Alternating Subspace Update Algorithm |
specification |
page_count |
15 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0256727 |
ISSN |
1053-587X |
title
|
IEEE Transactions on Signal Processing |
volume_id |
63 |
volume |
22 (2015) |
page_num |
5924-5938 |
|
keyword |
Canonical polyadic decomposition |
keyword |
tensor deflation |
keyword |
tensor tracking |
author
(primary) |
ARLID |
cav_un_auth*0274170 |
name1 |
Phan |
name2 |
A. H. |
country |
JP |
|
author
|
ARLID |
cav_un_auth*0101212 |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
full_dept |
Department of Stochastic Informatics |
name1 |
Tichavský |
name2 |
Petr |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0274171 |
name1 |
Cichocki |
name2 |
A. |
country |
JP |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0303443 |
project_id |
GA14-13713S |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
CANDECOMP/PARAFAC (CP) approximates multiway data by sum of rank-1 tensors. Unlike matrix decomposition, the procedure which estimates the best rank-tensor approximation through R sequential best rank-1 approximations does not work for tensors, because the deflation does not always reduce the tensor rank. In this paper, we propose a novel deflation method for the problem. When one factor matrix of a rank-CP decomposition is of full column rank, the decomposition can be performed through (R-1) rank-1 reductions. At each deflation stage, the residue tensor is constrained to have a reduced multilinear rank. For decomposition of order-3 tensors of size RxRxR and rank-R estimation of one rank-1 tensor has a computational cost of O(R^3) per iteration which is lower than the cost O(R^4) of the ALS algorithm for the overall CP decomposition. The method can be extended to tracking one or a few rank-one tensors of slow changes, or inspect variations of common patterns in individual datasets. |
RIV |
BB |
reportyear |
2016 |
num_of_auth |
3 |
mrcbC52 |
4 A hod 4ah 20231122141206.8 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0250564 |
mrcbC64 |
1 Department of Stochastic Informatics UTIA-B 20201 ENGINEERING, ELECTRICAL & ELECTRONIC |
confidential |
S |
mrcbT16-e |
ENGINEERINGELECTRICALELECTRONIC |
mrcbT16-j |
1.527 |
mrcbT16-s |
1.581 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
89.565 |
mrcbT16-C |
86.965 |
mrcbT16-D |
Q1 |
mrcbT16-E |
Q1* |
arlyear |
2015 |
mrcbTft |
\nSoubory v repozitáři: tichavsky-0448255.pdf |
mrcbU14 |
84944696619 SCOPUS |
mrcbU34 |
000362746500004 WOS |
mrcbU63 |
cav_un_epca*0256727 IEEE Transactions on Signal Processing 1053-587X 1941-0476 Roč. 63 č. 22 2015 5924 5938 |
|