bibtype J - Journal Article
ARLID 0448255
utime 20240103210755.4
mtime 20151022235959.9
SCOPUS 84944696619
WOS 000362746500004
DOI 10.1109/TSP.2015.2458785
title (primary) (eng) Tensor Deflation for CANDECOMP/PARAFAC - Part I: Alternating Subspace Update Algorithm
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0256727
ISSN 1053-587X
title IEEE Transactions on Signal Processing
volume_id 63
volume 22 (2015)
page_num 5924-5938
keyword Canonical polyadic decomposition
keyword tensor deflation
keyword tensor tracking
author (primary)
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0101212
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
name1 Tichavský
name2 Petr
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2015/SI/tichavsky-0448255.pdf
cas_special
project
ARLID cav_un_auth*0303443
project_id GA14-13713S
agency GA ČR
country CZ
abstract (eng) CANDECOMP/PARAFAC (CP) approximates multiway data by sum of rank-1 tensors. Unlike matrix decomposition, the procedure which estimates the best rank-tensor approximation through R sequential best rank-1 approximations does not work for tensors, because the deflation does not always reduce the tensor rank. In this paper, we propose a novel deflation method for the problem. When one factor matrix of a rank-CP decomposition is of full column rank, the decomposition can be performed through (R-1) rank-1 reductions. At each deflation stage, the residue tensor is constrained to have a reduced multilinear rank. For decomposition of order-3 tensors of size RxRxR and rank-R estimation of one rank-1 tensor has a computational cost of O(R^3) per iteration which is lower than the cost O(R^4) of the ALS algorithm for the overall CP decomposition. The method can be extended to tracking one or a few rank-one tensors of slow changes, or inspect variations of common patterns in individual datasets.
RIV BB
reportyear 2016
num_of_auth 3
mrcbC52 4 A hod 4ah 20231122141206.8
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0250564
mrcbC64 1 Department of Stochastic Informatics UTIA-B 20201 ENGINEERING, ELECTRICAL & ELECTRONIC
confidential S
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.527
mrcbT16-s 1.581
mrcbT16-4 Q1
mrcbT16-B 89.565
mrcbT16-C 86.965
mrcbT16-D Q1
mrcbT16-E Q1*
arlyear 2015
mrcbTft \nSoubory v repozitáři: tichavsky-0448255.pdf
mrcbU14 84944696619 SCOPUS
mrcbU34 000362746500004 WOS
mrcbU63 cav_un_epca*0256727 IEEE Transactions on Signal Processing 1053-587X 1941-0476 Roč. 63 č. 22 2015 5924 5938