bibtype V - Research Report
ARLID 0448604
utime 20240103210840.5
mtime 20151027235959.9
title (primary) (eng) PENLAB: A MATLAB solver for nonlinear semidefinite optimization
publisher
place Cambridge
name Isaac Newton Institute for Mathematical Sciences
pub_time 2013
specification
page_count 25 s.
media_type P
edition
name Technical Report
keyword nonlinear optimization
keyword semidefinite optimization
keyword numerical optimization
author (primary)
ARLID cav_un_auth*0321032
name1 Fiala
name2 J.
country GB
author
ARLID cav_un_auth*0101131
name1 Kočvara
name2 Michal
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0321033
name1 Stingl
name2 M.
country GB
source
url http://library.utia.cas.cz/separaty/2015/MTR/kocvara-0448604.pdf
cas_special
project
project_id GAP201/12/0671
agency GA ČR
country CZ
ARLID cav_un_auth*0289475
abstract (eng) PENLAB is an open source software package for nonlinear optimization, linear and nonlinear semidefinite optimization and any combination of these. It is written entirely in MATLAB. PENLAB is a young brother of our code PENNON [23] and of a new implementation from NAG [1]: it can solve the same classes of problems and uses the same algorithm. Unlike PENNON, PENLAB is open source and allows the user not only to solve problems but to modify various parts of the algorithm. As such, PENLAB is particularly suitable for teaching and research purposes and for testing new algorithmic ideas. In this article, after a brief presentation of the underlying algorithm, we focus on practical use of the solver, both for general problem classes and for specific practical problems.
reportyear 2016
RIV BA
num_of_auth 3
mrcbC52 4 O 4o 20231122141216.0
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0250759
confidential S
arlyear 2013
mrcbTft \nSoubory v repozitáři: 0448604.pdf
mrcbU10 2013
mrcbU10 Cambridge Isaac Newton Institute for Mathematical Sciences