bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0448768 |
utime |
20240111140908.8 |
mtime |
20151019235959.9 |
SCOPUS |
84964331002 |
WOS |
000369332000047 |
DOI |
10.1109/CCA.2015.7320653 |
title
(primary) (eng) |
Quantized Nonlinear Model Predictive Control for a Building |
specification |
page_count |
6 s. |
media_type |
C |
|
serial |
ARLID |
cav_un_epca*0448758 |
ISBN |
978-1-4799-7787-1 |
ISSN |
1085-1992 |
title
|
Proceedings of the 2015 IEEE Conference on Control Applications (CCA) |
page_num |
347-352 |
publisher |
place |
Sydney |
name |
IEEE |
year |
2015 |
|
|
keyword |
nonlinear model predictive control |
keyword |
building climate control |
author
(primary) |
ARLID |
cav_un_auth*0281469 |
name1 |
Pčolka |
name2 |
M. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0305702 |
name1 |
Žáčeková |
name2 |
E. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0304632 |
name1 |
Robinett |
name2 |
R. |
country |
US |
|
author
|
ARLID |
cav_un_auth*0101074 |
full_dept (cz) |
Teorie řízení |
full_dept |
Department of Control Theory |
department (cz) |
TŘ |
department |
TR |
full_dept |
Department of Control Theory |
name1 |
Čelikovský |
name2 |
Sergej |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0021057 |
name1 |
Šebek |
name2 |
M. |
country |
CZ |
|
source |
source_type |
článek |
source_size |
743 KB |
|
cas_special |
project |
ARLID |
cav_un_auth*0292613 |
project_id |
GA13-20433S |
agency |
GA ČR |
|
abstract
(eng) |
In this paper, the task of quantized nonlinear predictive control is addressed. In such case, values of some inputs can be from a continuous interval while for the others, it is required that the optimized values belong to a countable set of discrete values. Instead of very straightforward a posteriori quantization, an alternative algorithm is developed incorporating the quantization aspects directly into the optimization routine. The newly proposed quaNPC algorithm is tested on an example of building temperature control. The results for a broad range of number of quantization steps show that (unlike the naive a posteriori quantization) the quaNPC is able to maintain the control performance close to the performance of the original continuous-valued nonlinear predictive controller and at the same time it significantly decreases the undesirable oscillations of the discrete-valued input. |
action |
ARLID |
cav_un_auth*0320745 |
name |
IEEE Conference on Control Applications 2015 (CCA 2015) |
dates |
21.09.2015-23.09.2015 |
place |
Sydney |
country |
AU |
|
RIV |
BC |
reportyear |
2016 |
num_of_auth |
5 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0250397 |
cooperation |
ARLID |
cav_un_auth*0305697 |
name |
Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering |
institution |
ČVUT v Praze, FEL, Katedra řídicí techniky |
country |
CZ |
|
confidential |
S |
arlyear |
2015 |
mrcbU14 |
84964331002 SCOPUS |
mrcbU34 |
000369332000047 WOS |
mrcbU56 |
článek 743 KB |
mrcbU63 |
cav_un_epca*0448758 Proceedings of the 2015 IEEE Conference on Control Applications (CCA) 978-1-4799-7787-1 1085-1992 347 352 Sydney IEEE 2015 |
|