bibtype J - Journal Article
ARLID 0450509
utime 20240103211209.9
mtime 20151201235959.9
WOS 000366127000008
SCOPUS 84947214904
DOI 10.2298/CSIS141201051T
title (primary) (eng) Estimation of Input Function from Dynamic PET Brain Data Using Bayesian Blind Source Separation
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0361882
ISSN 1820-0214
title Computer Science and Information Systems
volume_id 12
volume 4 (2015)
page_num 1273-1287
keyword blind source separation
keyword Variational Bayes method
keyword dynamic PET
keyword input function
keyword deconvolution
author (primary)
ARLID cav_un_auth*0267768
name1 Tichý
name2 Ondřej
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/AS/tichy-0450509.pdf
cas_special
project
project_id GA13-29225S
agency GA ČR
ARLID cav_un_auth*0292734
abstract (eng) Selection of regions of interest in an image sequence is a typical prerequisite step for estimation of time-activity curves in dynamic positron emission tomography (PET). This procedure is done manually by a human operator and therefore suffers from subjective errors. Another such problem is to estimate the input function. It can be measured from arterial blood or it can be searched for a vascular structure on the images which is hard to be done, unreliable, and often impossible. In this study, we focus on blind source separation methods with no needs of manual interaction. Recently, we developed sparse blind source separation and deconvolution (S-BSS-vecDC) method for separation of original sources from dynamic medical data based on probability modeling and Variational Bayes approximation methodology. In this paper, we extend this method and we apply the methods on dynamic brain PET data and application and comparison of derived algorithms with those of similar assumptions are given. The S-BSS-vecDC algorithm is publicly available for download.
reportyear 2016
RIV BB
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0252672
confidential S
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS|COMPUTERSCIENCESOFTWAREENGINEERING
mrcbT16-j 0.154
mrcbT16-s 0.322
mrcbT16-4 Q2
mrcbT16-B 12.309
mrcbT16-C 20.286
mrcbT16-D Q4
mrcbT16-E Q2
arlyear 2015
mrcbU14 84947214904 SCOPUS
mrcbU34 000366127000008 WOS
mrcbU63 cav_un_epca*0361882 Computer Science and Information Systems 1820-0214 1820-0214 Roč. 12 č. 4 2015 1273 1287