bibtype C - Conference Paper (international conference)
ARLID 0450662
utime 20240103211221.5
mtime 20160229235959.9
SCOPUS 84956630926
WOS 000371977802039
DOI 10.1109/ICIP.2015.7351167
title (primary) (eng) PSF accuracy measure for evaluation of blur estimation algorithms
specification
page_count 5 s.
media_type C
serial
ARLID cav_un_epca*0450645
ISBN 978-1-4799-8339-1
ISSN 1522-4880
title Proceedings of the 2015 IEEE International Conference on Image Processing, ICIP 2015
page_num 2080-2084
publisher
place Piscataway
name IEEE
year 2015
keyword image deconvolution
keyword blur estimation
keyword PSF error
keyword PSF comparison
keyword image restoration
author (primary)
ARLID cav_un_auth*0293863
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
name1 Kotera
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101238
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
name1 Zitová
name2 Barbara
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
name1 Šroubek
name2 Filip
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/ZOI/kotera-0450662.pdf
cas_special
project
ARLID cav_un_auth*0292734
project_id GA13-29225S
agency GA ČR
project
ARLID cav_un_auth*0302211
project_id 938213/2013
agency GA UK
country CZ
project
ARLID cav_un_auth*0306850
project_id 7H14004
agency GA MŠk
abstract (eng) Given the large amount of blur estimation and blind deconvolution methods just in the last decade, there is an increasing need to compare the performance of a particular method with others. Unlike in other fields in image processing, there are very few well-established benchmark databases of test data and, more importantly, no standard way of performance evaluation. In this paper, we focus on the latter. We propose a new error measure for the blur kernel – a method for comparison of the blur estimate with the ground truth – which correctly reflects how inaccuracies in the blur estimation affect the subsequent image restoration, without the necessity to perform the actual deconvolution.
action
ARLID cav_un_auth*0322185
name IEEE International Conference on Image Processing 2015, ICIP 2015
dates 27.09.2015-30.09.2015
place Québec City
country CA
RIV JD
reportyear 2016
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0251951
confidential S
arlyear 2015
mrcbU14 84956630926 SCOPUS
mrcbU34 000371977802039 WOS
mrcbU63 cav_un_epca*0450645 Proceedings of the 2015 IEEE International Conference on Image Processing, ICIP 2015 978-1-4799-8339-1 1522-4880 2080 2084 Piscataway IEEE 2015