bibtype C - Conference Paper (international conference)
ARLID 0450667
utime 20240103211221.9
mtime 20151120235959.9
title (primary) (eng) Convolutional Neural Networks for Direct Text Deblurring
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0450684
ISBN 1-901725-53-7
title Proceedings of BMVC 2015
publisher
place Swansea
name The British Machine Vision Association and Society for Pattern Recognition
year 2015
keyword image deblurring
keyword text deblurring
keyword convolutional neural networks
keyword image restoration
author (primary)
ARLID cav_un_auth*0322281
name1 Hradiš
name2 M.
country CZ
author
ARLID cav_un_auth*0293863
name1 Kotera
name2 Jan
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0202610
name1 Zemčík
name2 P.
country CZ
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/ZOI/kotera-0450667.pdf
cas_special
project
project_id GA13-29225S
agency GA ČR
ARLID cav_un_auth*0292734
project
project_id 938213/2013
agency GA UK
country CZ
ARLID cav_un_auth*0302211
project
project_id 7H14004
agency GA MŠk
ARLID cav_un_auth*0306850
abstract (eng) In this work we address the problem of blind deconvolution and denoising. We focus on restoration of text documents and we show that this type of highly structured data can be successfully restored by a convolutional neural network. The networks are trained to reconstruct high-quality images directly from blurry inputs without assuming any specific blur and noise models. We demonstrate the performance of the convolutional networks on a large set of text documents and on a combination of realistic de-focus and camera shake blur kernels. On this artificial data, the convolutional networks significantly outperform existing blind deconvolution methods, including those optimized for text, in terms of image quality and OCR accuracy. In fact, the networks outperform even state-of-the-art non-blind methods for anything but the lowest noise levels. The approach is validated on real photos taken by various devices.
action
ARLID cav_un_auth*0322282
name The British Machine Vision Conference (BMVC) 2015 /26./
place Swansea
dates 07.09.2015-10.09.2015
country GB
reportyear 2016
RIV JD
num_of_auth 4
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0251960
mrcbC61 1
confidential S
arlyear 2015
mrcbU63 cav_un_epca*0450684 Proceedings of BMVC 2015 1-901725-53-7 Swansea The British Machine Vision Association and Society for Pattern Recognition 2015