bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0450671 |
utime |
20240103211222.2 |
mtime |
20151120235959.9 |
SCOPUS |
84925617936 |
WOS |
000353135300007 |
DOI |
10.1117/12.2077158 |
title
(primary) (eng) |
Blind deconvolution of images with model discrepancies using maximum a posteriori estimation with heavy-tailed priors |
specification |
page_count |
12 s. |
media_type |
C |
|
serial |
ARLID |
cav_un_epca*0445084 |
ISBN |
978-1-62841-494-3 |
ISSN |
0277-786X |
title
|
Digital Photography XI |
publisher |
place |
Bellingham |
name |
SPIE-IS&T |
year |
2015 |
|
|
keyword |
image blind deconvolution |
keyword |
image deblurring |
keyword |
blur estimation |
keyword |
pixel saturation |
keyword |
boundary artifacts |
author
(primary) |
ARLID |
cav_un_auth*0293863 |
name1 |
Kotera |
name2 |
Jan |
full_dept (cz) |
Zpracování obrazové informace |
full_dept (eng) |
Department of Image Processing |
department (cz) |
ZOI |
department (eng) |
ZOI |
institution |
UTIA-B |
full_dept |
Department of Image Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101209 |
name1 |
Šroubek |
name2 |
Filip |
full_dept (cz) |
Zpracování obrazové informace |
full_dept |
Department of Image Processing |
department (cz) |
ZOI |
department |
ZOI |
institution |
UTIA-B |
full_dept |
Department of Image Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
938213/2013 |
agency |
GA UK |
country |
CZ |
ARLID |
cav_un_auth*0302211 |
|
project |
project_id |
M100751201 |
agency |
GA AV ČR |
country |
CZ |
ARLID |
cav_un_auth*0289164 |
|
abstract
(eng) |
Single image blind deconvolution aims to estimate the unknown blur from a single observed blurred image and recover the original sharp image. Such task is severely ill-posed and typical approaches involve some heuristic or other steps without clear mathematical explanation to arrive at an acceptable solution. We show that a straight- forward maximum a posteriori estimation incorporating sparse priors and mechanism to deal with boundary artifacts, combined with an efficient numerical method can produce results which compete with or outperform much more complicated state-of-the-art methods. Our method is naturally extended to deal with overexposure in low-light photography, where linear blurring model is violated. |
action |
ARLID |
cav_un_auth*0316974 |
name |
Digital Photography and Mobile Imaging XI |
place |
San Francisco |
dates |
09.02.2015-10.02.2015 |
country |
US |
|
reportyear |
2016 |
RIV |
JD |
num_of_auth |
2 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0251952 |
mrcbC61 |
1 |
confidential |
S |
mrcbT16-s |
0.223 |
mrcbT16-E |
Q4 |
arlyear |
2015 |
mrcbU14 |
84925617936 SCOPUS |
mrcbU34 |
000353135300007 WOS |
mrcbU63 |
cav_un_epca*0445084 Digital Photography XI 978-1-62841-494-3 0277-786X 94040B Bellingham SPIE-IS&T 2015 SPIE Proceedings 9404 |
|