bibtype C - Conference Paper (international conference)
ARLID 0450671
utime 20240103211222.2
mtime 20151120235959.9
SCOPUS 84925617936
WOS 000353135300007
DOI 10.1117/12.2077158
title (primary) (eng) Blind deconvolution of images with model discrepancies using maximum a posteriori estimation with heavy-tailed priors
specification
page_count 12 s.
media_type C
serial
ARLID cav_un_epca*0445084
ISBN 978-1-62841-494-3
ISSN 0277-786X
title Digital Photography XI
publisher
place Bellingham
name SPIE-IS&T
year 2015
keyword image blind deconvolution
keyword image deblurring
keyword blur estimation
keyword pixel saturation
keyword boundary artifacts
author (primary)
ARLID cav_un_auth*0293863
name1 Kotera
name2 Jan
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/ZOI/kotera-0450671.pdf
cas_special
project
project_id 938213/2013
agency GA UK
country CZ
ARLID cav_un_auth*0302211
project
project_id M100751201
agency GA AV ČR
country CZ
ARLID cav_un_auth*0289164
abstract (eng) Single image blind deconvolution aims to estimate the unknown blur from a single observed blurred image and recover the original sharp image. Such task is severely ill-posed and typical approaches involve some heuristic or other steps without clear mathematical explanation to arrive at an acceptable solution. We show that a straight- forward maximum a posteriori estimation incorporating sparse priors and mechanism to deal with boundary artifacts, combined with an efficient numerical method can produce results which compete with or outperform much more complicated state-of-the-art methods. Our method is naturally extended to deal with overexposure in low-light photography, where linear blurring model is violated.
action
ARLID cav_un_auth*0316974
name Digital Photography and Mobile Imaging XI
place San Francisco
dates 09.02.2015-10.02.2015
country US
reportyear 2016
RIV JD
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0251952
mrcbC61 1
confidential S
mrcbT16-s 0.223
mrcbT16-E Q4
arlyear 2015
mrcbU14 84925617936 SCOPUS
mrcbU34 000353135300007 WOS
mrcbU63 cav_un_epca*0445084 Digital Photography XI 978-1-62841-494-3 0277-786X 94040B Bellingham SPIE-IS&T 2015 SPIE Proceedings 9404