bibtype C - Conference Paper (international conference)
ARLID 0451268
utime 20240111140911.6
mtime 20151126235959.9
SCOPUS 84971472877
WOS 000380460400025
DOI 10.1109/NDS.2015.7332655
title (primary) (eng) An unconditionally stable finite difference scheme systems described by second order partial differential equations
specification
page_count 6 s.
media_type C
serial
ARLID cav_un_epca*0451276
ISBN 978-1-4799-8739-9
title Proceedings of the 2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS )
page_num 134-139
publisher
place Vila Real
name IEEE
year 2015
keyword Discretization
keyword implicit difference scheme
keyword repetitive processes
author (primary)
ARLID cav_un_auth*0213204
full_dept (cz) Teorie řízení
full_dept (eng) Department of Control Theory
department (cz)
department (eng) TR
full_dept Department of Control Theory
name1 Augusta
name2 Petr
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0243458
name1 Cichy
name2 B.
country PL
author
ARLID cav_un_auth*0243459
name1 Galkowski
name2 K.
country PL
author
ARLID cav_un_auth*0228702
name1 Rogers
name2 E.
country GB
source
source_type příspěvek na konferenci
source_size 888 kB
cas_special
abstract (eng) An unconditionally stable finite difference scheme for systems whose dynamics are described by a second-order partial differential equation is developed. The scheme is motivated by the well-known Crank-Nicolson discretization which was developed for first-order systems. The stability of the finite-difference scheme is analysed by von Neumann’s method. Using the new scheme, a discrete in time and space model of a deformable mirror is derived as the basis for control law design. The convergence of this scheme for various values of the discretization parameters is checked by numerical simulations.
action
ARLID cav_un_auth*0322997
name The 2015 IEEE 9th International Workshop on MultiDimensional (nD) Systems (nDS) (2015)
dates 09.09.2015-11.09.2015
place Vila Real
country PT
RIV BC
reportyear 2016
num_of_auth 4
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0252444
cooperation
ARLID cav_un_auth*0322998
name Institute of Control and Computation Eng. University of Zielona Gora
institution ICCE
country PL
cooperation
ARLID cav_un_auth*0322999
name Dep. of Electronics and Computer Science University of Southampton
country GB
confidential S
arlyear 2015
mrcbU14 84971472877 SCOPUS
mrcbU34 000380460400025 WOS
mrcbU56 příspěvek na konferenci 888 kB
mrcbU63 cav_un_epca*0451276 Proceedings of the 2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS ) 978-1-4799-8739-9 134 139 Vila Real IEEE 2015