bibtype |
J -
Journal Article
|
ARLID |
0451399 |
utime |
20240103211311.6 |
mtime |
20151201235959.9 |
WOS |
000362883100004 |
SCOPUS |
84944062359 |
DOI |
10.1007/s10587-015-0200-7 |
title
(primary) (eng) |
Ergodicity for a Stochastic Geodesic Equation in the Tangent Bundle of the 2D Sphere |
specification |
page_count |
41 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0256482 |
ISSN |
0011-4642 |
title
|
Czechoslovak Mathematical Journal |
volume_id |
65 |
volume |
3 (2015) |
page_num |
617-657 |
publisher |
|
|
keyword |
geometric stochastic wave equation |
keyword |
stochastic geodesic equation |
keyword |
ergodicity |
keyword |
attractivity |
keyword |
invariant measure |
keyword |
numerical approximation |
author
(primary) |
ARLID |
cav_un_auth*0323271 |
name1 |
Baňas |
name2 |
L. |
country |
DE |
share |
20 |
|
author
|
ARLID |
cav_un_auth*0202382 |
name1 |
Brzezniak |
name2 |
Z. |
country |
GB |
share |
15 |
|
author
|
ARLID |
cav_un_auth*0323272 |
name1 |
Neklyudov |
name2 |
M. |
country |
IT |
share |
10 |
|
author
|
ARLID |
cav_un_auth*0260292 |
name1 |
Ondreját |
name2 |
Martin |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
garant |
K |
share |
35 |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0212864 |
name1 |
Prohl |
name2 |
A. |
country |
DE |
share |
20 |
|
source |
|
cas_special |
project |
project_id |
GAP201/10/0752 |
agency |
GA ČR |
ARLID |
cav_un_auth*0263519 |
|
abstract
(eng) |
Ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere are studied while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Existence and non-uniqueness of invariant probability measures for the original problem are proved and results on attractivity towards an invariant measure are obtained. A structure-preserving numerical scheme to approximate solutions are presented and computational experiments to motivate and illustrate the theoretical results are provided. |
reportyear |
2016 |
RIV |
BA |
num_of_auth |
5 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0252658 |
cooperation |
ARLID |
cav_un_auth*0323273 |
name |
Universität Tübingen, Mathematisches Institut |
|
cooperation |
ARLID |
cav_un_auth*0323274 |
name |
University of Pisa, Department of Mathematics |
|
cooperation |
ARLID |
cav_un_auth*0323275 |
name |
University of York, Department of Mathematics |
|
cooperation |
ARLID |
cav_un_auth*0323276 |
name |
Universität Bielefeld, Fakultät für Mathematik |
|
confidential |
S |
mrcbT16-e |
MATHEMATICS |
mrcbT16-j |
0.281 |
mrcbT16-s |
0.374 |
mrcbT16-4 |
Q3 |
mrcbT16-B |
18.91 |
mrcbT16-C |
5.929 |
mrcbT16-D |
Q4 |
mrcbT16-E |
Q3 |
arlyear |
2015 |
mrcbU14 |
84944062359 SCOPUS |
mrcbU34 |
000362883100004 WOS |
mrcbU63 |
cav_un_epca*0256482 Czechoslovak Mathematical Journal 0011-4642 1572-9141 Roč. 65 č. 3 2015 617 657 Springer |
|