| bibtype |
J -
Journal Article
|
| ARLID |
0451399 |
| utime |
20240103211311.6 |
| mtime |
20151201235959.9 |
| WOS |
000362883100004 |
| SCOPUS |
84944062359 |
| DOI |
10.1007/s10587-015-0200-7 |
| title
(primary) (eng) |
Ergodicity for a Stochastic Geodesic Equation in the Tangent Bundle of the 2D Sphere |
| specification |
| page_count |
41 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0256482 |
| ISSN |
0011-4642 |
| title
|
Czechoslovak Mathematical Journal |
| volume_id |
65 |
| volume |
3 (2015) |
| page_num |
617-657 |
| publisher |
|
|
| keyword |
geometric stochastic wave equation |
| keyword |
stochastic geodesic equation |
| keyword |
ergodicity |
| keyword |
attractivity |
| keyword |
invariant measure |
| keyword |
numerical approximation |
| author
(primary) |
| ARLID |
cav_un_auth*0323271 |
| name1 |
Baňas |
| name2 |
L. |
| country |
DE |
| share |
20 |
|
| author
|
| ARLID |
cav_un_auth*0202382 |
| name1 |
Brzezniak |
| name2 |
Z. |
| country |
GB |
| share |
15 |
|
| author
|
| ARLID |
cav_un_auth*0323272 |
| name1 |
Neklyudov |
| name2 |
M. |
| country |
IT |
| share |
10 |
|
| author
|
| ARLID |
cav_un_auth*0260292 |
| name1 |
Ondreját |
| name2 |
Martin |
| full_dept (cz) |
Stochastická informatika |
| full_dept |
Department of Stochastic Informatics |
| department (cz) |
SI |
| department |
SI |
| institution |
UTIA-B |
| full_dept |
Department of Stochastic Informatics |
| garant |
K |
| share |
35 |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0212864 |
| name1 |
Prohl |
| name2 |
A. |
| country |
DE |
| share |
20 |
|
| source |
|
| cas_special |
| project |
| project_id |
GAP201/10/0752 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0263519 |
|
| abstract
(eng) |
Ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere are studied while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Existence and non-uniqueness of invariant probability measures for the original problem are proved and results on attractivity towards an invariant measure are obtained. A structure-preserving numerical scheme to approximate solutions are presented and computational experiments to motivate and illustrate the theoretical results are provided. |
| reportyear |
2016 |
| RIV |
BA |
| num_of_auth |
5 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0252658 |
| cooperation |
| ARLID |
cav_un_auth*0323273 |
| name |
Universität Tübingen, Mathematisches Institut |
|
| cooperation |
| ARLID |
cav_un_auth*0323274 |
| name |
University of Pisa, Department of Mathematics |
|
| cooperation |
| ARLID |
cav_un_auth*0323275 |
| name |
University of York, Department of Mathematics |
|
| cooperation |
| ARLID |
cav_un_auth*0323276 |
| name |
Universität Bielefeld, Fakultät für Mathematik |
|
| confidential |
S |
| mrcbT16-e |
MATHEMATICS |
| mrcbT16-f |
0.377 |
| mrcbT16-g |
0.054 |
| mrcbT16-h |
999.9 |
| mrcbT16-i |
0.00172 |
| mrcbT16-j |
0.281 |
| mrcbT16-k |
922 |
| mrcbT16-s |
0.374 |
| mrcbT16-4 |
Q3 |
| mrcbT16-5 |
0.252 |
| mrcbT16-6 |
74 |
| mrcbT16-7 |
Q4 |
| mrcbT16-B |
18.91 |
| mrcbT16-C |
5.9 |
| mrcbT16-D |
Q4 |
| mrcbT16-E |
Q3 |
| mrcbT16-P |
5.929 |
| arlyear |
2015 |
| mrcbU14 |
84944062359 SCOPUS |
| mrcbU34 |
000362883100004 WOS |
| mrcbU63 |
cav_un_epca*0256482 Czechoslovak Mathematical Journal 0011-4642 1572-9141 Roč. 65 č. 3 2015 617 657 Springer |
|