bibtype J - Journal Article
ARLID 0451399
utime 20240103211311.6
mtime 20151201235959.9
WOS 000362883100004
SCOPUS 84944062359
DOI 10.1007/s10587-015-0200-7
title (primary) (eng) Ergodicity for a Stochastic Geodesic Equation in the Tangent Bundle of the 2D Sphere
specification
page_count 41 s.
media_type P
serial
ARLID cav_un_epca*0256482
ISSN 0011-4642
title Czechoslovak Mathematical Journal
volume_id 65
volume 3 (2015)
page_num 617-657
publisher
name Springer
keyword geometric stochastic wave equation
keyword stochastic geodesic equation
keyword ergodicity
keyword attractivity
keyword invariant measure
keyword numerical approximation
author (primary)
ARLID cav_un_auth*0323271
name1 Baňas
name2 L.
country DE
share 20
author
ARLID cav_un_auth*0202382
name1 Brzezniak
name2 Z.
country GB
share 15
author
ARLID cav_un_auth*0323272
name1 Neklyudov
name2 M.
country IT
share 10
author
ARLID cav_un_auth*0260292
name1 Ondreját
name2 Martin
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
garant K
share 35
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0212864
name1 Prohl
name2 A.
country DE
share 20
source
url http://library.utia.cas.cz/separaty/2015/SI/ondrejat-0451399.pdf
cas_special
project
project_id GAP201/10/0752
agency GA ČR
ARLID cav_un_auth*0263519
abstract (eng) Ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere are studied while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Existence and non-uniqueness of invariant probability measures for the original problem are proved and results on attractivity towards an invariant measure are obtained. A structure-preserving numerical scheme to approximate solutions are presented and computational experiments to motivate and illustrate the theoretical results are provided.
reportyear 2016
RIV BA
num_of_auth 5
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0252658
cooperation
ARLID cav_un_auth*0323273
name Universität Tübingen, Mathematisches Institut
cooperation
ARLID cav_un_auth*0323274
name University of Pisa, Department of Mathematics
cooperation
ARLID cav_un_auth*0323275
name University of York, Department of Mathematics
cooperation
ARLID cav_un_auth*0323276
name Universität Bielefeld, Fakultät für Mathematik
confidential S
mrcbT16-e MATHEMATICS
mrcbT16-j 0.281
mrcbT16-s 0.374
mrcbT16-4 Q3
mrcbT16-B 18.91
mrcbT16-C 5.929
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2015
mrcbU14 84944062359 SCOPUS
mrcbU34 000362883100004 WOS
mrcbU63 cav_un_epca*0256482 Czechoslovak Mathematical Journal 0011-4642 1572-9141 Roč. 65 č. 3 2015 617 657 Springer