bibtype C - Conference Paper (international conference)
ARLID 0452538
utime 20240103211432.6
mtime 20160215235959.9
SCOPUS 84949894891
WOS 000391072100022
DOI 10.1007/978-3-319-26393-9_22
title (primary) (eng) Mixtures of Product Components versus Mixtures of Dependence Trees
specification
page_count 18 s.
media_type P
serial
ARLID cav_un_epca*0453648
ISBN 978-3-319-26393-9
title Computational Intelligence
page_num 365-382
publisher
place Cham
name Springer
year 2016
keyword Product mixtures
keyword Mixtures of Dependence Trees
keyword EM algorithm
author (primary)
ARLID cav_un_auth*0101091
full_dept Department of Pattern Recognition
share 80
name1 Grim
name2 Jiří
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021092
share 20
name1 Pudil
name2 P.
country CZ
source
url http://library.utia.cas.cz/separaty/2016/RO/grim-0452538.pdf
cas_special
project
ARLID cav_un_auth*0308953
project_id GAP403/12/1557
agency GA ČR
country CZ
project
ARLID cav_un_auth*0303412
project_id GA14-02652S
agency GA ČR
country CZ
abstract (eng) Mixtures of product components assume independence of variables given the index of the component. They can be efficiently estimated from data by means of EM algorithm and have some other useful properties. On the other hand, by considering mixtures of dependence trees, we can explicitly describe the statistical relationship between pairs of variables at the level of individual components and therefore approximation power of the resulting mixture may essentially increase. However, we have found in application to classification of numerals that both models perform comparably and the contribution of dependence-tree structures to the log-likelihood criterion decreases in the course of EM iterations. Thus the optimal estimate of dependence-tree mixture tends to reduce to a simple product mixture model.
action
ARLID cav_un_auth*0324200
name IJCCI 2014 - International Joint Conference on Computational Intelligence (Rome/Italy)
dates 22.10.2014-24.10.2014
place Rome
country IT
RIV BD
reportyear 2016
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0257056
cooperation
ARLID cav_un_auth*0324201
name Faculty of Management, Prague University of Economics
institution FMJH VSE, Jindřichův Hradec
country CZ
confidential S
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence
arlyear 2016
mrcbU14 84949894891 SCOPUS
mrcbU34 000391072100022 WOS
mrcbU63 cav_un_epca*0453648 Computational Intelligence 978-3-319-26393-9 365 382 Cham Springer 2016 Studies in Computational Intelligence 620