bibtype D - Thesis
ARLID 0452795
utime 20240103211449.8
mtime 20160215235959.9
title (primary) (eng) Cross-entropy based combination of discrete probability distributions for distributed decision making
publisher
place Praha
name MFF UK
pub_time 2015
specification
page_count 80 s.
media_type P
keyword distributed decision making
keyword minimum cross-entropy principle
keyword Kullback-Leibler divergence
author (primary)
ARLID cav_un_auth*0263972
name1 Sečkárová
name2 Vladimíra
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/AS/seckarova-0452795.pdf
cas_special
project
project_id GA13-13502S
agency GA ČR
ARLID cav_un_auth*0292725
abstract (eng) In this work we propose a systematic way to combine discrete probability distributions based on decision making theory and theory of information, namely the cross-entropy (also known as the Kullback-Leibler (KL) divergence). The optimal combination is a probability mass function minimizing the conditional expected KL-divergence.
reportyear 2016
RIV BB
habilitation
dates 14.09.2015
degree Ph.D.
institution Ústav teorie informace a automatizace AV ČR
place Praha
year 2015
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0257075
confidential S
arlyear 2015
mrcbU10 2015
mrcbU10 Praha MFF UK