bibtype J - Journal Article
ARLID 0453103
utime 20240103211509.4
mtime 20151221235959.9
SCOPUS 84959553154
WOS 000365989300020
DOI 10.1109/TFUZZ.2015.2406888
title (primary) (eng) Generalizations of OWA Operators
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0253234
ISSN 1063-6706
title IEEE Transactions on Fuzzy Systems
volume_id 23
volume 6 (2015)
page_num 2154-2152
publisher
name Institute of Electrical and Electronics Engineers
keyword Choquet integral
keyword ordered modular average (OMA) operator
keyword ordered weighted average (OWA) operator
author (primary)
ARLID cav_un_auth*0101163
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
share 40
name1 Mesiar
name2 Radko
institution UTIA-B
garant S
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0307047
share 40
name1 Stupňanová
name2 A.
country SK
garant K
author
ARLID cav_un_auth*0021107
share 20
name1 Yager
name2 R. R.
country US
source
url http://library.utia.cas.cz/separaty/2015/E/mesiar-0453103.pdf
cas_special
abstract (eng) OWA operators can be seen as symmetrized weighted arithmetic means, as Choquet integrals with respect to symmetric measures, or as comonotone additive functionals. Following these three different looks on OWAs, we discuss several already known generalizations ofOWA operators, includingGOWA, IOWA,OMA operators, as well as we propose new types of such generalizations.
RIV BA
reportyear 2016
num_of_auth 3
mrcbC52 4 A hod 4ah 20231122141412.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0254003
mrcbC64 1 Department of Econometrics UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
confidential S
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.753
mrcbT16-s 4.552
mrcbT16-4 Q1
mrcbT16-B 92.725
mrcbT16-C 99.516
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2015
mrcbTft \nSoubory v repozitáři: mesiar-0453103.pdf
mrcbU14 84959553154 SCOPUS
mrcbU34 000365989300020 WOS
mrcbU63 cav_un_epca*0253234 IEEE Transactions on Fuzzy Systems 1063-6706 1941-0034 Roč. 23 č. 6 2015 2154 2152 Institute of Electrical and Electronics Engineers