bibtype |
J -
Journal Article
|
ARLID |
0453103 |
utime |
20240103211509.4 |
mtime |
20151221235959.9 |
SCOPUS |
84959553154 |
WOS |
000365989300020 |
DOI |
10.1109/TFUZZ.2015.2406888 |
title
(primary) (eng) |
Generalizations of OWA Operators |
specification |
page_count |
9 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0253234 |
ISSN |
1063-6706 |
title
|
IEEE Transactions on Fuzzy Systems |
volume_id |
23 |
volume |
6 (2015) |
page_num |
2154-2152 |
publisher |
name |
Institute of Electrical and Electronics Engineers |
|
|
keyword |
Choquet integral |
keyword |
ordered modular average (OMA) operator |
keyword |
ordered weighted average (OWA) operator |
author
(primary) |
ARLID |
cav_un_auth*0101163 |
full_dept (cz) |
Ekonometrie |
full_dept (eng) |
Department of Econometrics |
department (cz) |
E |
department (eng) |
E |
full_dept |
Department of Econometrics |
share |
40 |
name1 |
Mesiar |
name2 |
Radko |
institution |
UTIA-B |
garant |
S |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0307047 |
share |
40 |
name1 |
Stupňanová |
name2 |
A. |
country |
SK |
garant |
K |
|
author
|
ARLID |
cav_un_auth*0021107 |
share |
20 |
name1 |
Yager |
name2 |
R. R. |
country |
US |
|
source |
|
cas_special |
abstract
(eng) |
OWA operators can be seen as symmetrized weighted arithmetic means, as Choquet integrals with respect to symmetric measures, or as comonotone additive functionals. Following these three different looks on OWAs, we discuss several already known generalizations ofOWA operators, includingGOWA, IOWA,OMA operators, as well as we propose new types of such generalizations. |
RIV |
BA |
reportyear |
2016 |
num_of_auth |
3 |
mrcbC52 |
4 A hod 4ah 20231122141412.1 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0254003 |
mrcbC64 |
1 Department of Econometrics UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE |
confidential |
S |
mrcbT16-e |
COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC |
mrcbT16-j |
1.753 |
mrcbT16-s |
4.552 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
92.725 |
mrcbT16-C |
99.516 |
mrcbT16-D |
Q1* |
mrcbT16-E |
Q1* |
arlyear |
2015 |
mrcbTft |
\nSoubory v repozitáři: mesiar-0453103.pdf |
mrcbU14 |
84959553154 SCOPUS |
mrcbU34 |
000365989300020 WOS |
mrcbU63 |
cav_un_epca*0253234 IEEE Transactions on Fuzzy Systems 1063-6706 1941-0034 Roč. 23 č. 6 2015 2154 2152 Institute of Electrical and Electronics Engineers |
|