bibtype J - Journal Article
ARLID 0453168
utime 20240103211514.1
mtime 20151222235959.9
SCOPUS 84951017088
WOS 000372379700035
DOI 10.1016/j.apenergy.2015.11.051
title (primary) (eng) Forecasting the term structure of crude oil futures prices with neural networks
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0250867
ISSN 0306-2619
title Applied Energy
volume_id 164
volume 1 (2016)
page_num 366-379
publisher
name Elsevier
keyword Term structure
keyword Nelson–Siegel model
keyword Dynamic neural networks
keyword Crude oil futures
author (primary)
ARLID cav_un_auth*0242028
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
share 50
name1 Baruník
name2 Jozef
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0331302
share 50
name1 Malinská
name2 B.
country CZ
source
url http://library.utia.cas.cz/separaty/2016/E/barunik-0453168.pdf
cas_special
project
ARLID cav_un_auth*0281000
project_id GBP402/12/G097
agency GA ČR
country CZ
abstract (eng) The paper contributes to the limited literature modelling the term structure of crude oil markets. We explain the term structure of crude oil prices using the dynamic Nelson–Siegel model and propose to forecast oil prices using a generalized regression framework based on neural networks. The newly proposed framework is empirically tested on 24 years of crude oil futures prices covering several important recessions and crisis periods. We find 1-month-, 3-month-, 6-month- and 12-month-ahead forecasts obtained from a focused time-delay neural network to be significantly more accurate than forecasts from other benchmark models. The proposed forecasting strategy produces the lowest errors across all times to maturity.
RIV AH
reportyear 2017
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122141414.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0260446
mrcbC64 1 Department of Econometrics UTIA-B 20704 ENERGY & FUELS
confidential S
mrcbC86 1* Article Energy Fuels|Engineering Chemical
mrcbT16-e ENERGYFUELS|ENGINEERINGCHEMICAL
mrcbT16-j 1.306
mrcbT16-s 3.011
mrcbT16-4 Q1
mrcbT16-B 89.124
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2016
mrcbTft \nSoubory v repozitáři: barunik-0453168.pdf
mrcbU14 84951017088 SCOPUS
mrcbU34 000372379700035 WOS
mrcbU63 cav_un_epca*0250867 Applied Energy 0306-2619 1872-9118 Roč. 164 č. 1 2016 366 379 Elsevier