bibtype |
J -
Journal Article
|
ARLID |
0453288 |
utime |
20240103211521.9 |
mtime |
20160215235959.9 |
WOS |
000359144900010 |
SCOPUS |
84958535713 |
DOI |
10.1007/s11228-015-0323-x |
title
(primary) (eng) |
On the Lipschitz behavior of solution maps of a class of differential inclusions |
specification |
page_count |
15 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0343967 |
ISSN |
1877-0533 |
title
|
Set-Valued and Variational Analysis |
volume_id |
23 |
volume |
3 (2015) |
page_num |
559-575 |
publisher |
|
|
keyword |
Differential inclusions |
keyword |
Lipschitzian continuity |
keyword |
Stability |
keyword |
Variational analysis |
keyword |
Electrical circuits |
author
(primary) |
ARLID |
cav_un_auth*0309054 |
name1 |
Adam |
name2 |
Lukáš |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GAP201/12/0671 |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0289475 |
|
abstract
(eng) |
We consider a general differential inclusion which is parameterized by a parameter. We perform time discretization and present conditions under which the discretized solution map is locally Lipschitz. Further, if the Lipschitzian modulus is bounded in some sense, we show that it is possible to obtain the local Lipschitzian property even for the original (not discretized) solution map. We conclude the paper with an example concerning stability analysis of nonregular electrical circuits with ideal diodes. |
reportyear |
2016 |
RIV |
BA |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0257069 |
confidential |
S |
mrcbT16-e |
MATHEMATICSAPPLIED |
mrcbT16-j |
0.951 |
mrcbT16-s |
0.981 |
mrcbT16-4 |
Q2 |
mrcbT16-B |
78.069 |
mrcbT16-C |
62.008 |
mrcbT16-D |
Q1 |
mrcbT16-E |
Q2 |
arlyear |
2015 |
mrcbU14 |
84958535713 SCOPUS |
mrcbU34 |
000359144900010 WOS |
mrcbU63 |
cav_un_epca*0343967 Set-Valued and Variational Analysis 1877-0533 1877-0541 Roč. 23 č. 3 2015 559 575 Springer |
|