bibtype J - Journal Article
ARLID 0453288
utime 20240103211521.9
mtime 20160215235959.9
WOS 000359144900010
SCOPUS 84958535713
DOI 10.1007/s11228-015-0323-x
title (primary) (eng) On the Lipschitz behavior of solution maps of a class of differential inclusions
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0343967
ISSN 1877-0533
title Set-Valued and Variational Analysis
volume_id 23
volume 3 (2015)
page_num 559-575
publisher
name Springer
keyword Differential inclusions
keyword Lipschitzian continuity
keyword Stability
keyword Variational analysis
keyword Electrical circuits
author (primary)
ARLID cav_un_auth*0309054
name1 Adam
name2 Lukáš
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/MTR/adam-0453288.pdf
cas_special
project
project_id GAP201/12/0671
agency GA ČR
country CZ
ARLID cav_un_auth*0289475
abstract (eng) We consider a general differential inclusion which is parameterized by a parameter. We perform time discretization and present conditions under which the discretized solution map is locally Lipschitz. Further, if the Lipschitzian modulus is bounded in some sense, we show that it is possible to obtain the local Lipschitzian property even for the original (not discretized) solution map. We conclude the paper with an example concerning stability analysis of nonregular electrical circuits with ideal diodes.
reportyear 2016
RIV BA
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0257069
confidential S
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.951
mrcbT16-s 0.981
mrcbT16-4 Q2
mrcbT16-B 78.069
mrcbT16-C 62.008
mrcbT16-D Q1
mrcbT16-E Q2
arlyear 2015
mrcbU14 84958535713 SCOPUS
mrcbU34 000359144900010 WOS
mrcbU63 cav_un_epca*0343967 Set-Valued and Variational Analysis 1877-0533 1877-0541 Roč. 23 č. 3 2015 559 575 Springer