bibtype J - Journal Article
ARLID 0457037
utime 20240103211949.0
mtime 20160316235959.9
SCOPUS 84959423146
WOS 000374602000018
DOI 10.1016/j.envsoft.2016.02.002
title (primary) (eng) Sparse optimization for inverse problems in atmospheric modelling
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0252838
ISSN 1364-8152
title Environmental Modelling & Software
volume_id 79
volume 3 (2016)
page_num 256-266
publisher
name Elsevier
keyword Inverse modelling
keyword Sparse optimization
keyword Integer optimization
keyword Least squares
keyword European tracer experiment
keyword Free Matlab codes
author (primary)
ARLID cav_un_auth*0309054
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
name1 Adam
name2 Lukáš
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0280972
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Decision Making Theory
name1 Branda
name2 Martin
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf
cas_special
project
ARLID cav_un_auth*0318110
project_id 7F14287
agency GA MŠk
country CZ
abstract (eng) We consider inverse problems in atmospheric modelling represented by a linear system which is based on a source-receptor sensitivity matrix and measurements. Instead of using the ordinary least squares, we add a weighting matrix based on the topology of measurement points and show the connection with Bayesian modelling. Since the source-receptor sensitivity matrix is usually ill-conditioned, the problem is often regularized, either by perturbing the objective function or by modifying the sensitivity matrix. However, both these approaches may be heavily dependent on specified parameters. To ease this burden, we propose to use techniques looking for a sparse solution with a small number of positive elements. Finally, we compare all these methods on the European Tracer Experiment (ETEX) data where there is no apriori information apart from the release position and some measurements.
RIV BB
reportyear 2017
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0258406
confidential S
mrcbC86 3+4 Article Computer Science Interdisciplinary Applications|Engineering Environmental|Environmental Sciences|Water Resources
mrcbT16-e COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS|ENGINEERINGENVIRONMENTAL|ENVIRONMENTALSCIENCES
mrcbT16-j 1.21
mrcbT16-s 1.986
mrcbT16-4 Q1
mrcbT16-B 81.946
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2016
mrcbU14 84959423146 SCOPUS
mrcbU34 000374602000018 WOS
mrcbU63 cav_un_epca*0252838 Environmental Modelling & Software 1364-8152 1873-6726 Roč. 79 č. 3 2016 256 266 Elsevier