bibtype J - Journal Article
ARLID 0457337
utime 20240103212008.7
mtime 20160316235959.9
SCOPUS 85014589668
WOS 000396232000002
DOI 10.1109/TSMC.2015.2502427
title (primary) (eng) Scalable Harmonization of Complex Networks With Local Adaptive Controllers
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0430806
ISSN 2168-2216
title IEEE Transactions on Systems Man Cybernetics-Systems
volume_id 47
volume 3 (2017)
page_num 394-404
publisher
name Institute of Electrical and Electronics Engineers
keyword Adaptive control
keyword Adaptive estimation
keyword Bayes methods
keyword Complex networks
keyword Decentralized control
keyword Feedback
keyword Feedforward systems
keyword Recursive estimation
author (primary)
ARLID cav_un_auth*0101124
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
share 70
name1 Kárný
name2 Miroslav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0329444
share 30
name1 Herzallah
name2 R.
country GB
source
url http://library.utia.cas.cz/separaty/2016/AS/karny-0457337.pdf
cas_special
project
ARLID cav_un_auth*0292725
project_id GA13-13502S
agency GA ČR
abstract (eng) Computational and communication complexities call for distributed, robust, and adaptive control. This paper proposes a promising way of bottom-up design of distributed control in which simple controllers are responsible for individual nodes. The overall behavior of the network can be achieved by interconnecting such controlled loops in cascade control for example and by enabling the individual nodes to share information about data with their neighbors without aiming at unattainable global solution. The problem is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, that can be implemented adaptively and which provide a systematic rich way to information sharing. This paper elaborates the overall solution, applies it to linear-Gaussian case, and provides simulation results.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122141555.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0258400
mrcbC64 1 Department of Adaptive Systems UTIA-B 10200 COMPUTER SCIENCE, CYBERNETICS
confidential S
mrcbC86 2 Article Automation Control Systems|Computer Science Cybernetics
mrcbC86 2 Article Automation Control Systems|Computer Science Cybernetics
mrcbC86 2 Article Automation Control Systems|Computer Science Cybernetics
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|COMPUTERSCIENCECYBERNETICS
mrcbT16-j 1.073
mrcbT16-s 1.303
mrcbT16-B 62.96
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2017
mrcbTft \nSoubory v repozitáři: karny-0457337.pdf
mrcbU14 85014589668 SCOPUS
mrcbU34 000396232000002 WOS
mrcbU63 cav_un_epca*0430806 IEEE Transactions on Systems Man Cybernetics-Systems 2168-2216 2168-2232 Roč. 47 č. 3 2017 394 404 Institute of Electrical and Electronics Engineers