bibtype J - Journal Article
ARLID 0457408
utime 20240103212013.6
mtime 20160415235959.9
SCOPUS 84955413289
WOS 000368276100003
DOI 10.1016/j.fss.2015.07.014
title (primary) (eng) Decomposition approaches to integration without a measure
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 287
volume 1 (2016)
page_num 37-47
publisher
name Elsevier
keyword Choquet integral
keyword Decision making
keyword Decomposition integral
author (primary)
ARLID cav_un_auth*0282828
share 25
name1 Greco
name2 S.
country IT
author
ARLID cav_un_auth*0101163
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 30
name1 Mesiar
name2 Radko
institution UTIA-B
garant S
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0282829
share 25
name1 Rindone
name2 F.
country IT
garant K
author
ARLID cav_un_auth*0329981
share 20
name1 Sipeky
name2 L.
country SK
source
url http://library.utia.cas.cz/separaty/2016/E/mesiar-0457408.pdf
cas_special
abstract (eng) we discuss a general approach to integration based on a given decomposition system equipped with a weighting function, and a decomposition of the integrated function. We distinguish two type of decompositions: sub-decomposition based integrals (in economics linked with optimization problems to maximize the possible profit) and super-decomposition based integrals (linked with costs minimization). We provide several examples (both theoretical and realistic) to stress that our approach generalizes that of Even and Lehrer (2014) [3] and also covers problems of linear programming and combinatorial optimization. Finally, we introduce some new types of integrals related to optimization tasks.
RIV BA
reportyear 2017
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0258928
confidential S
mrcbC86 1 Article Computer Science Theory Methods|Mathematics Applied|Statistics Probability
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY
mrcbT16-j 0.684
mrcbT16-s 1.408
mrcbT16-4 Q1
mrcbT16-B 53.218
mrcbT16-D Q2
mrcbT16-E Q1*
arlyear 2016
mrcbU14 84955413289 SCOPUS
mrcbU34 000368276100003 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 287 č. 1 2016 37 47 Elsevier