bibtype C - Conference Paper (international conference)
ARLID 0458062
utime 20240111140917.6
mtime 20160415235959.9
SCOPUS 84964523737
title (primary) (eng) Bayesian Network Models for Adaptive Testing
specification
page_count 10 s.
media_type E
serial
ARLID cav_un_epca*0458683
ISSN 1613-0073
title Proceedings of the Twelfth UAI Bayesian Modeling Applications Workshop (BMAW 2015) co-located with the 31st Conference on Uncertainty in Artificial Intelligence (UAI 2015)
page_num 24-33
publisher
place Achen
name Sun SITE Central Europe
year 2016
editor
name1 Agosta
name2 J. M.
editor
name1 Carvalho
name2 R. N.
keyword Bayesian networks
keyword Computerized adaptive testing
author (primary)
ARLID cav_un_auth*0329423
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
name1 Plajner
name2 Martin
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101228
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
name1 Vomlel
name2 Jiří
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type elektronický sborník
url http://library.utia.cas.cz/separaty/2016/MTR/plajner-0458062.pdf
cas_special
project
ARLID cav_un_auth*0292670
project_id GA13-20012S
agency GA ČR
abstract (eng) Computerized adaptive testing (CAT) is an interesting and promising approach to testing human abilities. In our research we use Bayesian networks to create a model of tested humans. We collected data from paper tests performed with grammar school students. In this article we first provide the summary of data used for our experiments. We propose several different Bayesian networks, which we tested and compared by cross-validation. Interesting results were obtained and are discussed in the paper. The analysis has brought a clearer view on the model selection problem. Future research is outlined in the concluding part of the paper.
action
ARLID cav_un_auth*0329424
name The Twelfth UAI Bayesian Modeling Applications Workshop (BMAW 2015)
dates 16.07.2015
place Amsterdam
country NL
RIV JD
reportyear 2017
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0258931
confidential S
mrcbT16-s 0.186
mrcbT16-E Q3
arlyear 2016
mrcbU14 84964523737 SCOPUS
mrcbU56 elektronický sborník
mrcbU63 cav_un_epca*0458683 Proceedings of the Twelfth UAI Bayesian Modeling Applications Workshop (BMAW 2015) co-located with the 31st Conference on Uncertainty in Artificial Intelligence (UAI 2015) 1613-0073 24 33 Achen Sun SITE Central Europe 2016 CEUR Workshop Proceedings Vol 1565
mrcbU67 Agosta J. M. 340
mrcbU67 Carvalho R. N. 340