bibtype C - Conference Paper (international conference)
ARLID 0458485
utime 20240111140918.1
mtime 20160408235959.9
SCOPUS 84973333072
WOS 000388373404094
DOI 10.1109/ICASSP.2016.7472493
title (primary) (eng) Blind separation of underdetermined linear mixtures based on source nonstationarity and AR(1) modeling
specification
page_count 5 s.
media_type C
serial
ARLID cav_un_epca*0458486
ISBN 978-1-4799-9987-3
title Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Proocessing
page_num 4323-4327
publisher
place Piscataway
name IEEE
year 2016
keyword Autoregressive Processes
keyword Cramer-Rao Bound
keyword Blind Source Separation
author (primary)
ARLID cav_un_auth*0319418
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
share 40
name1 Šembera
name2 Ondřej
institution UTIA-B
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
share 40
name1 Tichavský
name2 Petr
institution UTIA-B
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0230113
share 20
name1 Koldovský
name2 Z.
country CZ
source
url http://library.utia.cas.cz/separaty/2016/SI/tichavsky-0458485.pdf
source_size 305 kB
cas_special
project
ARLID cav_un_auth*0303443
project_id GA14-13713S
agency GA ČR
country CZ
abstract (eng) The problem of blind separation of underdetermined instantaneous mixtures of independent signals is addressed through a method relying on nonstationarity of the original signals. The signals are assumed to be piecewise stationary with varying variances in different epochs. In comparison with previous works, in this paper it is assumed that the signals are not i.i.d. in each epoch, but obey a first-order autoregressive model. This model was shown to be more appropriate for blind separation of natural speech signals. A separation method is proposed that is nearly statistically efficient (approaching the corresponding Cram´er-Rao lower bound), if the separated signals obey the assumed model. In the case of natural speech signals, the method is shown to have separation accuracy better than the state-of-the-art methods.
action
ARLID cav_un_auth*0329851
name IEEE International Conference on Acoustics, Speech, and Signal Processing 2016 (ICASSP2016)
dates 20.03.2016-25.03.2016
place Shanghai
country CN
RIV BB
reportyear 2017
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0259447
confidential S
mrcbC86 3+4 Proceedings Paper Acoustics|Engineering Electrical Electronic
arlyear 2016
mrcbU14 84973333072 SCOPUS
mrcbU34 000388373404094 WOS
mrcbU56 305 kB
mrcbU63 cav_un_epca*0458486 Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Proocessing 978-1-4799-9987-3 4323 4327 Piscataway IEEE 2016