bibtype C - Conference Paper (international conference)
ARLID 0458487
utime 20240111140918.1
mtime 20160408235959.9
SCOPUS 84973352352
WOS 000388373402138
DOI 10.1109/ICASSP.2016.7472137
title (primary) (eng) Rank-one tensor injection: A novel method for canonical polyadic tensor decomposition
specification
page_count 5 s.
media_type C
serial
ARLID cav_un_epca*0458486
ISBN 978-1-4799-9987-3
title Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Proocessing
page_num 2549-2553
publisher
place Piscataway
name IEEE
year 2016
keyword CANDECOMP/PARAFAC
keyword tensor decomposition
keyword tensor deflation
author (primary)
ARLID cav_un_auth*0274170
share 70
name1 Phan
name2 A. H.
country JP
garant K
author
ARLID cav_un_auth*0101212
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
share 20
name1 Tichavský
name2 Petr
institution UTIA-B
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274171
share 10
name1 Cichocki
name2 A.
country JP
garant A
source
url http://library.utia.cas.cz/separaty/2016/SI/tichavsky-0458487.pdf
source_size 211 kB
cas_special
project
ARLID cav_un_auth*0303443
project_id GA14-13713S
agency GA ČR
country CZ
abstract (eng) Canonical polyadic decomposition of tensor is to approximate or express the tensor by sum of rank-1 tensors. When all or almost all components of factor matrices of the tensor are highly collinear, the decomposition becomes difficult. Algorithms, e.g., the alternating algorithms, require plenty of iterations, andmay get stuck in false localminima. This paper proposes a novel method for such decompositions. The method injects one or a few rank-1 tensors into the data tensor in order to control the decompositions of the rank-expanded data, while still preserving the estimation accuracy of the original tensor. To achieve this, we develop a method to automatically generate the injected tensor which satisfies a specific estimation accuracy such that this tensor should not dominate rank- 1 tensors of the data tensor, but is still able to be retrieved with a sufficient accuracy. Simulations on tensors with highly collinear factor matrices will illustrate efficiency of the proposed injecting method.
action
ARLID cav_un_auth*0329851
name IEEE International Conference on Acoustics, Speech, and Signal Processing 2016 (ICASSP2016)
dates 20.03.2016-25.03.2016
place Shanghai
country CN
RIV BB
reportyear 2017
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0259446
confidential S
mrcbC86 3+4 Proceedings Paper Acoustics|Engineering Electrical Electronic
arlyear 2016
mrcbU14 84973352352 SCOPUS
mrcbU34 000388373402138 WOS
mrcbU56 211 kB
mrcbU63 cav_un_epca*0458486 Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Proocessing 978-1-4799-9987-3 2549 2553 Piscataway IEEE 2016