bibtype J - Journal Article
ARLID 0458555
utime 20240103212133.2
mtime 20160412235959.9
SCOPUS 85020439236
WOS 000402887700002
DOI 10.1177/1081286515627674
title (primary) (eng) Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation
specification
page_count 21 s.
media_type P
serial
ARLID cav_un_epca*0254274
ISSN 1081-2865
title Mathematics and Mechanics of Solids
volume_id 22
volume 6 (2017)
page_num 1267-1287
publisher
name Sage
keyword rate-independent systems
keyword nonsmooth continuum mechanics
keyword incomplete ductile damage
author (primary)
ARLID cav_un_auth*0101187
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
name1 Roubíček
name2 Tomáš
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0292941
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
name1 Valdman
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/MTR/valdman-0458555.pdf
cas_special
project
ARLID cav_un_auth*0304434
project_id GA14-15264S
agency GA ČR
project
ARLID cav_un_auth*0292653
project_id GA13-18652S
agency GA ČR
abstract (eng) Quasistatic rate-independent damage combined with linearized plasticity with hardening at small strains is investigated. Fractional-step time discretization is devised with the purpose of obtaining a numerically efficient scheme, possibly converging to a physically relevant stress-driven solution, which however is to be verified a posteriori using a suitable integrated variant of the maximum-dissipation principle. Gradient theories both for damage and for plasticity are considered to make the scheme numerically stable with guaranteed convergence within the class of weak solutions. After finite-element approximation, this scheme is computationally implemented and illustrative 2-dimensional simulations are performed.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2018
mrcbC47 UT-L 10000 10100 10101
mrcbC55 UT-L BA
inst_support RVO:67985556
inst_support RVO:61388998
permalink http://hdl.handle.net/11104/0258814
confidential S
mrcbC86 2 Article Materials Science Multidisciplinary|Mathematics Interdisciplinary Applications|Mechanics
mrcbC86 2 Article Materials Science Multidisciplinary|Mathematics Interdisciplinary Applications|Mechanics
mrcbC86 2 Article Materials Science Multidisciplinary|Mathematics Interdisciplinary Applications|Mechanics
mrcbT16-e MATERIALSSCIENCEMULTIDISCIPLINARY|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS|MECHANICS
mrcbT16-j 0.584
mrcbT16-s 0.768
mrcbT16-B 42.04
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2017
mrcbU14 85020439236 SCOPUS
mrcbU34 000402887700002 WOS
mrcbU63 cav_un_epca*0254274 Mathematics and Mechanics of Solids 1081-2865 1741-3028 Roč. 22 č. 6 2017 1267 1287 Sage