bibtype J - Journal Article
ARLID 0458557
utime 20240103212133.4
mtime 20160412235959.9
WOS 000371228400014
SCOPUS 84960366725
DOI 10.1137/15M1019647
title (primary) (eng) Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation
specification
page_count 27 s.
media_type P
serial
ARLID cav_un_epca*0255070
ISSN 0036-1399
title Siam Journal on Applied Mathematics
volume_id 76
volume 1 (2016)
page_num 314-340
publisher
name SIAM Society for Industrial and Applied Mathematics
keyword Prandtl-Reuss perfect plasticity
keyword bounded-deformation space
keyword incomplete damage
author (primary)
ARLID cav_un_auth*0243096
name1 Roubíček
name2 Tomáš
full_dept (cz) D 2 - Termodynamika
full_dept (eng) D 2 - Thermodynamics
institution UT-L
full_dept D2 – Thermodynamics
fullinstit Ústav termomechaniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/MTR/valdman-0458557.pdf
cas_special
project
project_id GA13-18652S
agency GA ČR
ARLID cav_un_auth*0292653
project
project_id GA14-15264S
agency GA ČR
ARLID cav_un_auth*0304434
abstract (eng) The quasistatic, Prandtl-Reuss perfect plasticity at small strains is combined with a gradient, reversible (i.e., admitting healing) damage which influences both the elastic moduli and the yield stress. Existence of weak solutions of the resulting system of variational inequalities is proved by a suitable fractional-step discretization in time with guaranteed numerical stability and convergence. After finite-element approximation, this scheme is computationally implemented and illustrative two-dimensional simulations are performed. The model allows, e.g., for application in geophysical modeling of reoccurring rupture of lithospheric faults. Resulting incremental problems are solved in MATLAB by quasi-Newton method to resolve the elastoplasticity component of the solution, while the damage component is obtained by solving a quadratic programming problem.
reportyear 2017
RIV BA
mrcbC52 4 A hod 4ah 20231122141631.3
inst_support RVO:67985556
inst_support RVO:61388998
permalink http://hdl.handle.net/11104/0258816
mrcbC64 1 Department of Decision Making Theory UTIA-B 10102 MATHEMATICS, APPLIED
confidential S
mrcbC86 1* Article Mathematics Applied
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 1.091
mrcbT16-s 1.068
mrcbT16-4 Q2
mrcbT16-B 82.769
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2016
mrcbTft \nSoubory v repozitáři: valdman-0458557.pdf
mrcbU14 84960366725 SCOPUS
mrcbU34 000371228400014 WOS
mrcbU63 cav_un_epca*0255070 Siam Journal on Applied Mathematics 0036-1399 1095-712X Roč. 76 č. 1 2016 314 340 SIAM Society for Industrial and Applied Mathematics