bibtype J - Journal Article
ARLID 0459096
utime 20240103212208.7
mtime 20160502235959.9
SCOPUS 84964632518
WOS 000378459500004
DOI 10.1016/j.cam.2016.03.033
title (primary) (eng) Numerical problems with the Pascal triangle in moment computation
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0256933
ISSN 0377-0427
title Journal of Computational and Applied Mathematics
volume_id 306
volume 1 (2016)
page_num 53-68
publisher
name Elsevier
keyword moment computation
keyword Pascal triangle
keyword appropriate polynomial basis
keyword numerical problems
author (primary)
ARLID cav_un_auth*0212473
name1 Kautsky
name2 J.
country AU
author
ARLID cav_un_auth*0101087
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
name1 Flusser
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0459096.pdf
cas_special
project
ARLID cav_un_auth*0314467
project_id GA15-16928S
agency GA ČR
abstract (eng) Moments are important characteristics of digital signals and images and are commonly used for their description and classification. When calculating the moments and their derived functions numerically, we face, among other numerical problems studied in the literature, certain instabilities which are connected with the properties of Pascal triangle. The Pascal triangle appears in moment computation in various forms whenever we have to deal with binomial powers. In this paper, we investigate the reasons for these instabilities in three particular cases—central moments, complex moments, and moment blur invariants. While in the first two cases this phenomenon is tolerable, in the third one it causes serious numerical problems. We analyze these problems and show that they can be partially overcome by choosing an appropriate polynomial basis.
RIV JD
reportyear 2017
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0259702
confidential S
mrcbC86 3+4 Article Mathematics Applied
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.655
mrcbT16-s 1.087
mrcbT16-4 Q1
mrcbT16-B 48.942
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2016
mrcbU14 84964632518 SCOPUS
mrcbU34 000378459500004 WOS
mrcbU63 cav_un_epca*0256933 Journal of Computational and Applied Mathematics 0377-0427 1879-1778 Roč. 306 č. 1 2016 53 68 Elsevier