bibtype J - Journal Article
ARLID 0459179
utime 20240103212213.9
mtime 20160506235959.9
SCOPUS 84962097630
WOS 000376708000010
DOI 10.1016/j.patcog.2016.03.003
title (primary) (eng) A competition in unsupervised color image segmentation
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0257388
ISSN 0031-3203
title Pattern Recognition
volume_id 57
volume 9 (2016)
page_num 136-151
publisher
name Elsevier
keyword Unsupervised image segmentation
keyword Segmentation contest
keyword Texture analysis
author (primary)
ARLID cav_un_auth*0101093
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
name1 Haindl
name2 Michal
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101165
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
name1 Mikeš
name2 Stanislav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/RO/haindl-0459179.pdf
cas_special
project
ARLID cav_un_auth*0303439
project_id GA14-10911S
agency GA ČR
country CZ
abstract (eng) A competition in unsupervised color image segmentation took place in conjunction with the 22nd International Conference on Pattern Recognition (ICPR 2014). It aimed to promote evaluation of unsupervised color image segmentation algorithms using publicly available data sets, and to allow for any subsequent methods to be easily evaluated and compared with the results of the contested methods under identical conditions. Our comparison of different methods is based on the standard methodology of performance assessment using an on-line verification server. We present in this paper the evaluation of the top six results submitted to the ICPR 2014 contest in unsupervised color image segmentation and compare them with 11 other state-of-the-art unsupervised image segmenters.
RIV BD
reportyear 2017
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122141653.7
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0259701
mrcbC64 1 Department of Pattern Recognition UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
confidential S
mrcbC86 2 Article Computer Science Artificial Intelligence|Engineering Electrical Electronic
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.361
mrcbT16-s 1.501
mrcbT16-4 Q1
mrcbT16-B 85.445
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2016
mrcbTft \nSoubory v repozitáři: haindl-0459179.pdf
mrcbU14 84962097630 SCOPUS
mrcbU34 000376708000010 WOS
mrcbU63 cav_un_epca*0257388 Pattern Recognition 0031-3203 1873-5142 Roč. 57 č. 9 2016 136 151 Elsevier