bibtype J - Journal Article
ARLID 0459332
utime 20240103212223.9
mtime 20160513235959.9
SCOPUS 84966457206
WOS 000378662600005
DOI 10.1016/j.dsp.2016.04.012
title (primary) (eng) Fast convolutional sparse coding using matrix inversion lemma
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0252719
ISSN 1051-2004
title Digital Signal Processing
volume_id 55
volume 1 (2016)
page_num 44-51
publisher
name Elsevier
keyword Convolutional sparse coding
keyword Feature learning
keyword Deconvolution networks
keyword Shift-invariant sparse coding
author (primary)
ARLID cav_un_auth*0108377
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
name1 Šorel
name2 Michal
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
name1 Šroubek
name2 Filip
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/ZOI/sorel-0459332.pdf
cas_special
project
ARLID cav_un_auth*0292734
project_id GA13-29225S
agency GA ČR
abstract (eng) Convolutional sparse coding is an interesting alternative to standard sparse coding in modeling shift-invariant signals, giving impressive results for example in unsupervised learning of visual features. In state-of-the-art methods, the most time-consuming parts include inversion of a linear operator related to convolution. In this article we show how these inversions can be computed non-iteratively in the Fourier domain using the matrix inversion lemma. This greatly speeds up computation and makes convolutional sparse coding computationally feasible even for large problems. The algorithm is derived in three variants, one of them especially suitable for parallel implementation. We demonstrate algorithms on two-dimensional image data but all results hold for signals of arbitrary dimension.
RIV JD
reportyear 2017
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122141659.8
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0259700
mrcbC64 1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, THEORY & METHODS
confidential S
mrcbC86 1* Article Engineering Electrical Electronic
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.554
mrcbT16-s 0.598
mrcbT16-4 Q2
mrcbT16-B 49.689
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2016
mrcbTft \nSoubory v repozitáři: sorel-0459332.pdf
mrcbU14 84966457206 SCOPUS
mrcbU34 000378662600005 WOS
mrcbU63 cav_un_epca*0252719 Digital Signal Processing 1051-2004 1095-4333 Roč. 55 č. 1 2016 44 51 Elsevier