bibtype J - Journal Article
ARLID 0460306
utime 20240111140920.7
mtime 20160624235959.9
SCOPUS 84956865804
WOS 000378955700012
DOI 10.1016/j.conengprac.2016.01.007
title (primary) (eng) Bridging the gap between the linear and nonlinear predictive control: Adaptations fo refficient building climate control
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0252596
ISSN 0967-0661
title Control Engineering Practice
volume_id 53
volume 1 (2016)
page_num 124-138
publisher
name Elsevier
keyword Model predictive control
keyword Identification for control
keyword Building climatecontrol
author (primary)
ARLID cav_un_auth*0281469
name1 Pčolka
name2 M.
country CZ
author
ARLID cav_un_auth*0305702
name1 Žáčeková
name2 E.
country CZ
author
ARLID cav_un_auth*0304632
name1 Robinett
name2 R.
country US
author
ARLID cav_un_auth*0101074
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
full_dept Department of Control Theory
name1 Čelikovský
name2 Sergej
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021057
name1 Šebek
name2 M.
country CZ
source
source_type článek v odborném periodiku
url http://library.utia.cas.cz/separaty/2016/TR/celikovsky-0460306.pdf
cas_special
project
ARLID cav_un_auth*0292613
project_id GA13-20433S
agency GA ČR
abstract (eng) The linear model predictive control which is frequently used for building climate control benefits from the fact that the resulting optimization task is convex (thus easily and quickly solvable). On the other hand, the nonlinear model predictive control enables the use of a more detailed nonlinear model and it takes advantage of the fact that it addresses the optimization task more directly, however, it requires a more computationally complex algorithm for solving the non-convex optimization problem. In this paper,the gap between the linear and the nonlinear one is bridged by introducing apredictive controller with linear time-dependent model. Making use of linear time-dependent model of the building, the newly proposed controller obtains predictions which are closer to reality than those of linear time in-variant model, however,the computational complexity is still kept low since the optimization task remains convex.
RIV BC
reportyear 2017
num_of_auth 5
mrcbC52 4 A hod 4ah 20231122141737.2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0260442
cooperation
ARLID cav_un_auth*0300364
name Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague
institution ČVUT FEL v Praze
country CZ
mrcbC64 1 Department of Control Theory UTIA-B 20205 AUTOMATION & CONTROL SYSTEMS
confidential S
mrcbC86 2 Article|Proceedings Paper Automation Control Systems|Engineering Electrical Electronic
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.774
mrcbT16-s 1.076
mrcbT16-4 Q1
mrcbT16-B 63.799
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2016
mrcbTft \nSoubory v repozitáři: celikovsky-0460306.pdf
mrcbU14 84956865804 SCOPUS
mrcbU34 000378955700012 WOS
mrcbU56 článek v odborném periodiku
mrcbU63 cav_un_epca*0252596 Control Engineering Practice 0967-0661 1873-6939 Roč. 53 č. 1 2016 124 138 Elsevier