bibtype J - Journal Article
ARLID 0460326
utime 20240103212338.7
mtime 20160625235959.9
SCOPUS 84961209711
WOS 000374781100012
DOI 10.1080/10556788.2016.1146267
title (primary) (eng) A first-order multigrid method for bound-constrained convex optimization
specification
page_count 23 s.
media_type P
serial
ARLID cav_un_epca*0254588
ISSN 1055-6788
title Optimization Methods & Software
volume_id 31
volume 3 (2016)
page_num 622-644
publisher
name Taylor & Francis
keyword bound-constrained optimization
keyword multigrid methods
keyword linear complementarity problems
author (primary)
ARLID cav_un_auth*0101131
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
share 50
name1 Kočvara
name2 Michal
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0333149
share 50
name1 Mohammed
name2 S.
country GB
source
url http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460326.pdf
cas_special
project
ARLID cav_un_auth*0289475
project_id GAP201/12/0671
agency GA ČR
country CZ
project
ARLID cav_un_auth*0331291
project_id 313781
agency European Commission - EC
country XE
abstract (eng) The aim of this paper is to design an efficient multigrid method for constrained convex optimization problems arising from discretization of some underlying infinite dimensional problems. Due to problem dependency of this approach, we only consider bound constraints with (possibly) a single equality constraint. As our aim is to target large-scale problems, we want to avoid computation of second derivatives of the objective function, thus excluding Newton like methods. We propose a smoothing operator that only uses first-order information and study the computational efficiency of the resulting method.
RIV BA
reportyear 2017
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0261898
confidential S
mrcbC86 3+4 Article Computer Science Software Engineering|Operations Research Management Science|Mathematics Applied
mrcbT16-e COMPUTERSCIENCESOFTWAREENGINEERING|MATHEMATICSAPPLIED|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 1.06
mrcbT16-s 0.870
mrcbT16-4 Q1
mrcbT16-B 79.863
mrcbT16-D Q1
mrcbT16-E Q2
arlyear 2016
mrcbU14 84961209711 SCOPUS
mrcbU34 000374781100012 WOS
mrcbU63 cav_un_epca*0254588 Optimization Methods & Software 1055-6788 1029-4937 Roč. 31 č. 3 2016 622 644 Taylor & Francis