bibtype J - Journal Article
ARLID 0460710
utime 20240103212406.8
mtime 20160714235959.9
SCOPUS 84978100769
WOS 000379694800005
DOI 10.1109/LSP.2016.2577383
title (primary) (eng) Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0253212
ISSN 1070-9908
title IEEE Signal Processing Letters
volume_id 23
volume 7 (2016)
page_num 993-997
publisher
name Institute of Electrical and Electronics Engineers
keyword canonical polyadic decomposition
keyword PARAFAC
keyword tensor decomposition
author (primary)
ARLID cav_un_auth*0101212
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
name1 Tichavský
name2 Petr
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2016/SI/tichavsky-0460710.pdf
cas_special
project
ARLID cav_un_auth*0303443
project_id GA14-13713S
agency GA ČR
country CZ
abstract (eng) Canonical polyadic decomposition (CPD), also known as parallel factor analysis, is a representation of a given tensor as a sum of rank-one components. Traditional method for accomplishing CPD is the alternating least squares (ALS) algorithm. Convergence of ALS is known to be slow, especially when some factor matrices of the tensor contain nearly collinear columns. We propose a novel variant of this technique, in which the factor matrices are partitioned into blocks, and each iteration jointly updates blocks of different factor matrices. Each partial optimization is quadratic and can be done in closed form. The algorithm alternates between different random partitionings of the matrices. As a result, a faster convergence is achieved. Another improvement can be obtained when the method is combined with the enhanced line search of Rajih et al. Complexity per iteration is between those of the ALS and the Levenberg–Marquardt (damped Gauss–Newton) method.
RIV BB
reportyear 2017
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0261531
confidential S
mrcbC86 2 Article Engineering Electrical Electronic
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.964
mrcbT16-s 0.798
mrcbT16-4 Q1
mrcbT16-B 73.144
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2016
mrcbU14 84978100769 SCOPUS
mrcbU34 000379694800005 WOS
mrcbU63 cav_un_epca*0253212 IEEE Signal Processing Letters 1070-9908 1558-2361 Roč. 23 č. 7 2016 993 997 Institute of Electrical and Electronics Engineers