bibtype J - Journal Article
ARLID 0460909
utime 20240103212422.5
mtime 20160721235959.9
SCOPUS 84966573884
WOS 000380275600004
DOI 10.1007/s10957-016-0943-9
title (primary) (eng) Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers
specification
page_count 18 s.
media_type P
serial
ARLID cav_un_epca*0257061
ISSN 0022-3239
title Journal of Optimization Theory and Applications
volume_id 170
volume 2 (2016)
page_num 419-436
publisher
name Springer
keyword Chance constrained programming
keyword Optimality conditions
keyword Regularization
keyword Algorithms
keyword Free MATLAB codes
author (primary)
ARLID cav_un_auth*0309054
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
name1 Adam
name2 Lukáš
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0280972
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Decision Making Theory
name1 Branda
name2 Martin
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/MTR/adam-0460909.pdf
cas_special
project
ARLID cav_un_auth*0321507
project_id GA15-00735S
agency GA ČR
abstract (eng) We deal with chance constrained problems with differentiable nonlinear random functions and discrete distribution. We allow nonconvex functions both in the constraints and in the objective. We reformulate the problem as a mixed-integer nonlinear program and relax the integer variables into continuous ones. We approach the relaxed problem as a mathematical problem with complementarity constraints and regularize it by enlarging the set of feasible solutions. For all considered problems, we derive necessary optimality conditions based on Fréchet objects corresponding to strong stationarity. We discuss relations between stationary points and minima. We propose two iterative algorithms for finding a stationary point of the original problem. The first is based on the relaxed reformulation, while the second one employs its regularized version.
RIV BB
reportyear 2017
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0261533
confidential S
mrcbC86 1* Article Operations Research Management Science|Mathematics Applied
mrcbT16-e MATHEMATICSAPPLIED|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 0.837
mrcbT16-s 1.092
mrcbT16-4 Q1
mrcbT16-B 68.758
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2016
mrcbU14 84966573884 SCOPUS
mrcbU34 000380275600004 WOS
mrcbU63 cav_un_epca*0257061 Journal of Optimization Theory and Applications 0022-3239 1573-2878 Roč. 170 č. 2 2016 419 436 Springer