bibtype |
J -
Journal Article
|
ARLID |
0461163 |
utime |
20240103212424.4 |
mtime |
20160722235959.9 |
SCOPUS |
84946600068 |
WOS |
000372835900003 |
DOI |
10.1080/02331934.2015.1107560 |
title
(primary) (eng) |
A note on stability of stationary points in mathematical programs with generalized complementarity constraints |
specification |
page_count |
12 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0258218 |
ISSN |
0233-1934 |
title
|
Optimization |
volume_id |
65 |
volume |
5 (2016) |
page_num |
1049-1060 |
publisher |
|
|
keyword |
parameter-dependent mathematical programs with generalized equilibrium constraints |
keyword |
M-stationarity |
keyword |
C-stationarity |
keyword |
isolated calmness |
keyword |
Aubin property |
author
(primary) |
ARLID |
cav_un_auth*0220207 |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
full_dept |
Department of Decision Making Theory |
name1 |
Červinka |
name2 |
Michal |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0284931 |
project_id |
GAP402/12/1309 |
agency |
GA ČR |
|
abstract
(eng) |
We consider parameter-dependent mathematical programs with constraints governed by the generalized non-linear complementarity problem and with additional non-equilibrial constraints. We study a local behaviour of stationarity maps that assign the respective C- or M-stationarity points of the problem to the parameter. Using generalized differential calculus rules, we provide criteria for the isolated calmness and the Aubin properties of stationarity maps considered. To this end, we derive and apply formulas of some particular objects of the third- order variational analysis. |
RIV |
BA |
reportyear |
2017 |
num_of_auth |
1 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0261534 |
confidential |
S |
mrcbC86 |
3+4 Article Operations Research Management Science|Mathematics Applied |
mrcbT16-e |
MATHEMATICSAPPLIED|OPERATIONSRESEARCHMANAGEMENTSCIENCE |
mrcbT16-j |
0.572 |
mrcbT16-s |
0.745 |
mrcbT16-4 |
Q2 |
mrcbT16-B |
38.215 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q2 |
arlyear |
2016 |
mrcbU14 |
84946600068 SCOPUS |
mrcbU34 |
000372835900003 WOS |
mrcbU63 |
cav_un_epca*0258218 Optimization 0233-1934 1029-4945 Roč. 65 č. 5 2016 1049 1060 Taylor & Francis |
|