bibtype J - Journal Article
ARLID 0461163
utime 20240103212424.4
mtime 20160722235959.9
SCOPUS 84946600068
WOS 000372835900003
DOI 10.1080/02331934.2015.1107560
title (primary) (eng) A note on stability of stationary points in mathematical programs with generalized complementarity constraints
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0258218
ISSN 0233-1934
title Optimization
volume_id 65
volume 5 (2016)
page_num 1049-1060
publisher
name Taylor & Francis
keyword parameter-dependent mathematical programs with generalized equilibrium constraints
keyword M-stationarity
keyword C-stationarity
keyword isolated calmness
keyword Aubin property
author (primary)
ARLID cav_un_auth*0220207
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
name1 Červinka
name2 Michal
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/MTR/cervinka-0461163.pdf
cas_special
project
ARLID cav_un_auth*0284931
project_id GAP402/12/1309
agency GA ČR
abstract (eng) We consider parameter-dependent mathematical programs with constraints governed by the generalized non-linear complementarity problem and with additional non-equilibrial constraints. We study a local behaviour of stationarity maps that assign the respective C- or M-stationarity points of the problem to the parameter. Using generalized differential calculus rules, we provide criteria for the isolated calmness and the Aubin properties of stationarity maps considered. To this end, we derive and apply formulas of some particular objects of the third- order variational analysis.
RIV BA
reportyear 2017
num_of_auth 1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0261534
confidential S
mrcbC86 3+4 Article Operations Research Management Science|Mathematics Applied
mrcbT16-e MATHEMATICSAPPLIED|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 0.572
mrcbT16-s 0.745
mrcbT16-4 Q2
mrcbT16-B 38.215
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2016
mrcbU14 84946600068 SCOPUS
mrcbU34 000372835900003 WOS
mrcbU63 cav_un_epca*0258218 Optimization 0233-1934 1029-4945 Roč. 65 č. 5 2016 1049 1060 Taylor & Francis