bibtype C - Conference Paper (international conference)
ARLID 0462336
utime 20240111140923.8
mtime 20160908235959.9
SCOPUS 85006049361
WOS 000391554300037
DOI 10.1109/IS.2016.7737431
title (primary) (eng) Mixture-based Clustering Non-gaussian Data with Fixed Bounds
specification
page_count 7 s.
media_type C
serial
ARLID cav_un_epca*0462335
ISBN 978-1-5090-1353-1
title Proceedings of 2016 IEEE 8th International Conference on Intelligent Systems
page_num 265-271
publisher
place Sofia
name IEEE
year 2016
keyword mixture-based clustering
keyword recursive mixture estimation
keyword mixture of uniform distributions
keyword data-dependent pointer
author (primary)
ARLID cav_un_auth*0101167
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
name1 Nagy
name2 Ivan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0108105
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
name1 Suzdaleva
name2 Evgenia
institution UTIA-B
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274528
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
name1 Mlynářová
name2 Tereza
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2016/ZS/suzdaleva-0462336.pdf
cas_special
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
abstract (eng) This paper deals with clustering non-gaussian data with fixed bounds. It considers the problem using recursive mixture estimation algorithms under the Bayesian methodology. Such a solution is often desired in areas, where the assumption of normality of modeled data is rather questionable and brings a series of limitations (e.g., non-negative, bounded data, etc.). Here for modeling the data a mixture of uniform distributions is taken, where individual clusters are described by mixture components. For the on-line detection of clusters of measured bounded data, the paper proposes a mixture estimation algorithm based on (i) the update of reproducible statistics of uniform components; (ii) the heuristic initialization via the method of moments; (iii) the non-trivial adaptive forgetting technique; (iv) the data-dependent dynamic pointer model. The approach is validated using realistic traffic flow simulations.
action
ARLID cav_un_auth*0333078
name 2016 IEEE 8th International Conference on Intelligent Systems IS'2016
dates 04.09.2016-06.09.2016
place Sofia
country BG
RIV BB
reportyear 2017
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0262262
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Hardware Architecture
arlyear 2016
mrcbU14 85006049361 SCOPUS
mrcbU34 000391554300037 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0462335 Proceedings of 2016 IEEE 8th International Conference on Intelligent Systems 978-1-5090-1353-1 265-271 265 271 Sofia IEEE 2016