bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0462336 |
utime |
20240111140923.8 |
mtime |
20160908235959.9 |
SCOPUS |
85006049361 |
WOS |
000391554300037 |
DOI |
10.1109/IS.2016.7737431 |
title
(primary) (eng) |
Mixture-based Clustering Non-gaussian Data with Fixed Bounds |
specification |
page_count |
7 s. |
media_type |
C |
|
serial |
ARLID |
cav_un_epca*0462335 |
ISBN |
978-1-5090-1353-1 |
title
|
Proceedings of 2016 IEEE 8th International Conference on Intelligent Systems |
page_num |
265-271 |
publisher |
place |
Sofia |
name |
IEEE |
year |
2016 |
|
|
keyword |
mixture-based clustering |
keyword |
recursive mixture estimation |
keyword |
mixture of uniform distributions |
keyword |
data-dependent pointer |
author
(primary) |
ARLID |
cav_un_auth*0101167 |
full_dept (cz) |
Zpracování signálů |
full_dept (eng) |
Department of Signal Processing |
department (cz) |
ZS |
department (eng) |
ZS |
full_dept |
Department of Signal Processing |
name1 |
Nagy |
name2 |
Ivan |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0108105 |
full_dept (cz) |
Zpracování signálů |
full_dept |
Department of Signal Processing |
department (cz) |
ZS |
department |
ZS |
full_dept |
Department of Signal Processing |
name1 |
Suzdaleva |
name2 |
Evgenia |
institution |
UTIA-B |
country |
RU |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0274528 |
full_dept (cz) |
Zpracování signálů |
full_dept |
Department of Signal Processing |
department (cz) |
ZS |
department |
ZS |
name1 |
Mlynářová |
name2 |
Tereza |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0321440 |
project_id |
GA15-03564S |
agency |
GA ČR |
|
abstract
(eng) |
This paper deals with clustering non-gaussian data with fixed bounds. It considers the problem using recursive mixture estimation algorithms under the Bayesian methodology. Such a solution is often desired in areas, where the assumption of normality of modeled data is rather questionable and brings a series of limitations (e.g., non-negative, bounded data, etc.). Here for modeling the data a mixture of uniform distributions is taken, where individual clusters are described by mixture components. For the on-line detection of clusters of measured bounded data, the paper proposes a mixture estimation algorithm based on (i) the update of reproducible statistics of uniform components; (ii) the heuristic initialization via the method of moments; (iii) the non-trivial adaptive forgetting technique; (iv) the data-dependent dynamic pointer model. The approach is validated using realistic traffic flow simulations. |
action |
ARLID |
cav_un_auth*0333078 |
name |
2016 IEEE 8th International Conference on Intelligent Systems IS'2016 |
dates |
04.09.2016-06.09.2016 |
place |
Sofia |
country |
BG |
|
RIV |
BB |
reportyear |
2017 |
num_of_auth |
3 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0262262 |
confidential |
S |
mrcbC86 |
n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Hardware Architecture |
arlyear |
2016 |
mrcbU14 |
85006049361 SCOPUS |
mrcbU34 |
000391554300037 WOS |
mrcbU56 |
pdf |
mrcbU63 |
cav_un_epca*0462335 Proceedings of 2016 IEEE 8th International Conference on Intelligent Systems 978-1-5090-1353-1 265-271 265 271 Sofia IEEE 2016 |
|