bibtype J - Journal Article
ARLID 0462418
utime 20240103212555.6
mtime 20160910235959.9
SCOPUS 84994082410
WOS 000387347700039
DOI 10.1137/15M1044126
title (primary) (eng) Primal-Dual Interior Point Multigrid Method for Topology Optimization
specification
page_count 24 s.
media_type P
serial
ARLID cav_un_epca*0257600
ISSN 1064-8275
title SIAM Journal on Scientific Computing
volume_id 38
volume 5 (2016)
publisher
name SIAM Society for Industrial and Applied Mathematics
keyword topology optimization
keyword multigrid methods
keyword interior point method
author (primary)
ARLID cav_un_auth*0101131
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
name1 Kočvara
name2 Michal
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0333149
name1 Mohammed
name2 S.
country GB
source
url http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0462418.pdf
cas_special
project
ARLID cav_un_auth*0331291
project_id 313781
agency European Commission - EC
country XE
abstract (eng) An interior point method for the structural topology optimization is proposed. The linear systems arising in the method are solved by the conjugate gradient method preconditioned by geometric multigrid. The resulting method is then compared with the so-called optimality condition method, an established technique in topology optimization. This method is also equipped with the multigrid preconditioned conjugate gradient algorithm. We conclude that, for large scale problems, the interior point method with an inexact iterative linear solver is superior to any other variant studied in the paper.
RIV BA
reportyear 2017
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122141842.7
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0261930
mrcbC64 1 Department of Decision Making Theory UTIA-B 10102 MATHEMATICS, APPLIED
confidential S
mrcbC86 2 Article Mathematics Applied
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 1.718
mrcbT16-s 1.992
mrcbT16-4 Q1
mrcbT16-B 93.737
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2016
mrcbTft \nSoubory v repozitáři: kocvara-0462418.pdf
mrcbU14 84994082410 SCOPUS
mrcbU34 000387347700039 WOS
mrcbU63 cav_un_epca*0257600 SIAM Journal on Scientific Computing 1064-8275 1095-7197 Roč. 38 č. 5 2016 B685 B709 SIAM Society for Industrial and Applied Mathematics