bibtype C - Conference Paper (international conference)
ARLID 0462468
utime 20240111140924.3
mtime 20160912235959.9
SCOPUS 84996555014
WOS 000389524200094
DOI 10.1109/ETFA.2016.7733587
title (primary) (eng) Adaptive Fault Diagnoser based on PSO Algorithm for a class of Timed Continuous Petri Nets
specification
page_count 7 s.
media_type C
serial
ARLID cav_un_epca*0462467
ISBN 978-1-5090-1314-2
title Proceedings of 2016 IEEE 21th Conference on Emerging Technologies & Factory Automation (ETFA)
part_title IEEE catalog number: CFP16ETF-ART
page_num 1-7
publisher
place Berlin
name IEEE
year 2016
keyword Fault detection
keyword Timed Petri Nets
author (primary)
ARLID cav_un_auth*0333178
name1 Casas-Carrillo
name2 R.
country MX
author
ARLID cav_un_auth*0333179
name1 Begovich
name2 O.
country MX
author
ARLID cav_un_auth*0213231
name1 Ruiz-León
name2 J.
country MX
author
ARLID cav_un_auth*0101074
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
full_dept Department of Control Theory
name1 Čelikovský
name2 Sergej
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type příspěvek na konferenci
url http://www.ieeeexplore.ws/document/7733587/
source_size 3,06 MB
cas_special
project
ARLID cav_un_auth*0292613
project_id GA13-20433S
agency GA ČR
abstract (eng) This work is concerned with the implementation of an Adaptive Fault Diagnoser (AFD) for a system modeled by Timed Continuous Petri Nets under infinite server semantics, where the set of potential faults is a priori known, however their presence during system evolution, type, location, occurrence time, magnitude and behavior over time are unknown. There exist previous works reported in literature, where this problem has been solved, unfortunately the number of diagnosers used to detect, isolate and identify the fault is too large. Now, this work proposes a single diagnoser model where its structure is known and some of its parameters are updated depending on the fault occurrence. Considering this model, identification algorithms, based on heuristic optimization methods, are used to identify these unknown fault parameters. The analysis of the diagnoser parameters allows the faults detection, isolation and identification. The effectiveness of the proposed diagnoser is shown through two examples with different fault behaviors.
action
ARLID cav_un_auth*0333180
name The 2016 IEEE 21th Conference on Emerging Technologies & Factory Automation (ETFA)
dates 06.09.2016-09.09.2016
place Berlin
country DE
RIV BC
reportyear 2017
num_of_auth 4
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0261934
mrcbC61 1
cooperation
ARLID cav_un_auth*0333181
name CINVESTAV Unidad Guadalajara, Zapopan, Jalisco, Mexico
institution CINVESTAV
country MX
confidential S
mrcbC86 3+4 Proceedings Paper Automation Control Systems
arlyear 2016
mrcbU14 84996555014 SCOPUS
mrcbU34 000389524200094 WOS
mrcbU56 příspěvek na konferenci 3,06 MB
mrcbU63 cav_un_epca*0462467 Proceedings of 2016 IEEE 21th Conference on Emerging Technologies & Factory Automation (ETFA) 978-1-5090-1314-2 1 7 Berlin IEEE 2016 IEEE catalog number: CFP16ETF-ART