bibtype J - Journal Article
ARLID 0462694
utime 20240103212615.5
mtime 20160916235959.9
SCOPUS 84987597576
WOS 000422970700001
DOI 10.1007/s00440-016-0741-1
title (primary) (eng) A simple proof of exponential decay of subcritical contact processes
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0254797
ISSN 0178-8051
title Probability Theory and Related Fields
volume_id 170
page_num 1-9
publisher
name Springer
keyword subcritical contact process
keyword sharpness of the phase transition
keyword eigenmeasure
author (primary)
ARLID cav_un_auth*0217893
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
share 100
name1 Swart
name2 Jan M.
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/SI/swart-0462694.pdf
cas_special
project
ARLID cav_un_auth*0334217
project_id GA16-15238S
agency GA ČR
country CZ
abstract (eng) This paper gives a new, simple proof of the known fact that for contact processes on general lattices, in the subcritical regime the expected number of infected sites decays exponentially fast as time tends to infinity. The proof also yields an explicit bound on the survival probability below the critical recovery rate, which shows that the critical exponent associated with this function is bounded from below by its mean-field value. The main idea of the proof is that if the expected number of infected sites decays slower than exponentially, then this implies the existence of a harmonic function that can be used to show that the process survives for any lower value of the recovery rate.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2019
num_of_auth 1
mrcbC52 4 A hod 4ah 20231122141854.5
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0262360
mrcbC64 1 Department of Stochastic Informatics UTIA-B 10103 STATISTICS & PROBABILITY
confidential S
mrcbC86 3+4 Article Statistics Probability
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 3.041
mrcbT16-s 3.672
mrcbT16-B 93.645
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2018
mrcbTft \nSoubory v repozitáři: swart-0462694.pdf
mrcbU14 84987597576 SCOPUS
mrcbU34 000422970700001 WOS
mrcbU63 cav_un_epca*0254797 Probability Theory and Related Fields 0178-8051 1432-2064 Roč. 170 1-2 2018 1 9 Springer