bibtype C - Conference Paper (international conference)
ARLID 0462891
utime 20240103212627.9
mtime 20160921235959.9
SCOPUS 84987935072
WOS 000389086300027
DOI 10.1007/978-3-319-44778-0_27
title (primary) (eng) Deliberation-aware Responder in Multi-Proposer Ultimatum Game
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0463079
ISBN 978-3-319-44777-3
ISSN 0302-9743
title Artificial Neural Networks and Machine Learning – ICANN 2016
part_num Part I.
page_num 230-237
publisher
place Cham
name Springer
year 2016
keyword deliberation effort
keyword Markov decision process
keyword ultimatum game
author (primary)
ARLID cav_un_auth*0333672
name1 Ruman
name2 Marko
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
country SK
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0333671
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
share 20
name1 Hůla
name2 František
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101124
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
share 20
name1 Kárný
name2 Miroslav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101092
name1 Guy
name2 Tatiana Valentine
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/AS/karny-0462891.pdf
cas_special
project
ARLID cav_un_auth*0331019
project_id GA16-09848S
agency GA AV ČR
abstract (eng) The article studies deliberation aspects by modelling a responder in multi-proposers ultimatum game (UG). Compared to the classical UG, deliberative multi-proposers UG suggests that at each round the responder selects the proposer to play with. Any change of the proposer (compared to the previous round) is penalised. The simulation results show that though switching of proposers incurred non-negligible deliberation costs, the economic profit of the deliberation-aware responder was significantly higher in multi-proposer UG compared to the classical UG.
action
ARLID cav_un_auth*0333805
name International Conference on Artificial Neural Networks 2016 /25./
dates 20160906
mrcbC20-s 20160909
place Barcelona
country ES
RIV BB
reportyear 2017
num_of_auth 4
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0262367
confidential S
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Computer Science Information Systems|Computer Science Theory Methods|Robotics
mrcbT16-s 0.325
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2016
mrcbU14 84987935072 SCOPUS
mrcbU34 000389086300027 WOS
mrcbU63 cav_un_epca*0463079 Artificial Neural Networks and Machine Learning – ICANN 2016 Part I. 978-3-319-44777-3 0302-9743 230 237 Cham Springer 2016 Lecture Notes in Computer Science 9886