bibtype J - Journal Article
ARLID 0463481
utime 20240103212712.7
mtime 20161006235959.9
SCOPUS 84958280797
WOS 000381329100009
DOI 10.1016/j.jkss.2016.01.004
title (primary) (eng) On Hoeffding and Bernstein type inequalities for sums of random variables in non-additive measure spaces and complete convergence
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0344617
ISSN 1226-3192
title Journal of the Korean Statistical Society
volume_id 45
volume 3 (2016)
page_num 439-450
publisher
name Elsevier
keyword Hoeffding’s inequality
keyword Bernstein’s inequality
keyword Complete convergence
keyword Choquet integral
author (primary)
ARLID cav_un_auth*0261431
share 30
name1 Agahi
name2 H.
country IR
garant K
author
ARLID cav_un_auth*0101163
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 40
name1 Mesiar
name2 Radko
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0334818
share 30
name1 Motiee
name2 M.
country IR
source
url http://library.utia.cas.cz/separaty/2016/E/mesiar-0463481.pdf
cas_special
abstract (eng) Working with real phenomena, one often faces situations where additivity assumption is unavailable. Non-additive measures and Choquet integral are attracting much attention from scientists in many different areas such as financial economics, economic modelling, probability theory and statistics. Hoeffding’s and Bernstein’s inequalities are two powerful tools that can be applied in many studies of the asymptotic behaviour of inference problems in probability theory, model selection, stochastic processes and economic modelling. One thing that seems missing is the developments of Hoeffding’s and Bernstein’s inequalities for sums of random variables in non-additive cases. The purposes of this paper are to extend Hoeffding’s and Bernstein’s inequalities for sums of random variables from probability measure space to non-additive measure space, and then establish two complete convergence theorems for more general form.
RIV BA
reportyear 2017
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0263129
confidential S
mrcbC86 3+4 Article Statistics Probability
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 0.407
mrcbT16-s 0.532
mrcbT16-4 Q3
mrcbT16-B 18.175
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2016
mrcbU14 84958280797 SCOPUS
mrcbU34 000381329100009 WOS
mrcbU63 cav_un_epca*0344617 Journal of the Korean Statistical Society 1226-3192 2005-2863 Roč. 45 č. 3 2016 439 450 Elsevier