bibtype J - Journal Article
ARLID 0464463
utime 20240903170538.3
mtime 20161029235959.9
SCOPUS 85020286021
WOS 000388307600001
DOI 10.14311/NNW.2016.26.024
title (primary) (eng) On-line mixture-based alternative to logistic regression
specification
page_count 20 s.
media_type E
serial
ARLID cav_un_epca*0290321
ISSN 1210-0552
title Neural Network World
volume_id 26
volume 5 (2016)
page_num 417-437
publisher
name Ústav informatiky AV ČR, v. v. i.
keyword on-line modeling
keyword on-line logistic regression
keyword recursive mixture estimation
keyword data dependent pointer
author (primary)
ARLID cav_un_auth*0101167
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
name1 Nagy
name2 Ivan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0108105
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
name1 Suzdaleva
name2 Evgenia
institution UTIA-B
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2016/ZS/suzdaleva-0464463.pdf
cas_special
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
abstract (eng) The paper deals with a problem of modeling discrete variables depending on continuous variables. This problem is known as the logistic regression estimated by numerical methods. The paper approaches the problem via the recursive Bayesian estimation of mixture models with the purpose of exploring a possibility of constructing the continuous data dependent switching model that should be estimated on-line. Here the model of the discrete variable dependent on continuous data is represented as the model of the mixture pointer dependent on data from mixture components via their parameters, which switch according to the activity of the components. On-line estimation of the data dependent pointer model has a great potential for tasks of clustering and classification. The specific subproblems include (i) the model parameter estimation both of the pointer and of the components obtained during the learning phase, and (ii) prediction of the pointer value during the testing phase.
RIV BB
reportyear 2017
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0263657
confidential S
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.091
mrcbT16-s 0.174
mrcbT16-4 Q4
mrcbT16-B 2.277
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2016
mrcbU14 85020286021 SCOPUS
mrcbU34 000388307600001 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0290321 Neural Network World 1210-0552 Roč. 26 č. 5 2016 417 437 Ústav informatiky AV ČR, v. v. i.