bibtype J - Journal Article
ARLID 0465564
utime 20240103212932.1
mtime 20161119235959.9
WOS 000386235300002
SCOPUS 84993967024
DOI 10.1109/TIT.2016.2601598
title (primary) (eng) Entropy region and convolution
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0256723
ISSN 0018-9448
title IEEE Transactions on Information Theory
volume_id 62
volume 11 (2016)
page_num 6007-6018
publisher
name Institute of Electrical and Electronics Engineers
keyword entropy region
keyword information-theoretic inequality
keyword polymatroid
author (primary)
ARLID cav_un_auth*0101161
name1 Matúš
name2 František
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0339463
name1 Csirmaz
name2 L.
country HU
source
url http://library.utia.cas.cz/separaty/2016/MTR/matus-0465564.pdf
cas_special
project
project_id GA13-20012S
agency GA ČR
ARLID cav_un_auth*0292670
abstract (eng) The entropy region is constructed from vectors of random variables by collecting Shannon entropies of all subvectors. Its shape is studied here by means of polymatroidal constructions, notably by convolution. The closure of the region is decomposed into the direct sum of tight and modular parts, reducing the study to the tight part. The relative interior of the reduction belongs to the entropy region. Behavior of the decomposition under selfadhesivity is clarified. Results are specialized and extended to the region constructed from four-tuples of random variables. This and computer experiments help to visualize approximations of a symmetrized part of the entropy region. The four-atom conjecture on the minimal Ingleton score is refuted.
RIV BD
reportyear 2017
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122142018.8
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0265403
mrcbC64 1 Department of Decision Making Theory UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
confidential S
mrcbC86 1 Article Computer Science Information Systems|Engineering Electrical Electronic
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.272
mrcbT16-s 1.362
mrcbT16-4 Q1
mrcbT16-B 86.473
mrcbT16-D Q1*
mrcbT16-E Q1
arlyear 2016
mrcbTft \nSoubory v repozitáři: matus-0465564.pdf
mrcbU14 84993967024 SCOPUS
mrcbU34 000386235300002 WOS
mrcbU63 cav_un_epca*0256723 IEEE Transactions on Information Theory 0018-9448 1557-9654 Roč. 62 č. 11 2016 6007 6018 Institute of Electrical and Electronics Engineers