bibtype J - Journal Article
ARLID 0465945
utime 20240111140928.9
mtime 20161124235959.9
SCOPUS 85007086435
WOS 000390183200005
DOI 10.3727/096368916X692005
title (primary) (eng) Automated Analysis of Microscopic Images of Isolated Pancreatic Islets
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0252393
ISSN 0963-6897
title Cell Transplantation
volume_id 25
volume 12 (2016)
page_num 2145-2156
publisher
name Sage
keyword enumeration of islets
keyword image processing
keyword image segmentation
keyword islet transplantation
keyword machine-learning
keyword quality control
author (primary)
ARLID cav_un_auth*0336694
name1 Habart
name2 D.
country CZ
author
ARLID cav_un_auth*0277057
name1 Švihlík
name2 J.
country CZ
author
ARLID cav_un_auth*0101190
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
name1 Schier
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216102
name1 Cahová
name2 M.
country CZ
author
ARLID cav_un_auth*0221384
name1 Girman
name2 P.
country CZ
author
ARLID cav_un_auth*0221382
name1 Zacharovová
name2 K.
country CZ
author
ARLID cav_un_auth*0221383
name1 Berková
name2 Z.
country CZ
author
ARLID cav_un_auth*0214394
name1 Kříž
name2 J.
country CZ
author
ARLID cav_un_auth*0307772
name1 Fabryová
name2 E.
country CZ
author
ARLID cav_un_auth*0284136
name1 Kosinová
name2 L.
country CZ
author
ARLID cav_un_auth*0320486
name1 Papáčková
name2 Z.
country CZ
author
ARLID cav_un_auth*0233560
name1 Kybic
name2 J.
country CZ
author
ARLID cav_un_auth*0069778
name1 Saudek
name2 F.
country CZ
source
source_type PDF dokument
url http://library.utia.cas.cz/separaty/2016/ZOI/schier-0465945.pdf
cas_special
project
ARLID cav_un_auth*0339800
project_id GA14-10440S
agency GA ČR
country CZ
abstract (eng) Clinical islet transplantation programs rely on the capacities of individual centers to quantify isolated islets. We describe two machine learning algorithms for islet quantification, the trainable islet algorithm (TIA) and the non-trainable purity algorithm (NPA). These algorithms automatically segment pancreatic islets and exocrine tissue on microscopic images in order to count individual islets, and calculate islet volume and purity. References for islet counts and volumes were generated by the fully manual segmentation (FMS) method, which was validated against the internal DNA standard. References for islet purity were generated via the expert visual assessment (EVA) method, which was validated against the FMS method.
RIV IN
reportyear 2017
num_of_auth 13
mrcbC52 4 A hod 4ah 20231122142036.8
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0265686
cooperation
ARLID cav_un_auth*0336695
name Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague
institution ČVUT FEL
country CZ
cooperation
ARLID cav_un_auth*0336696
name Diabetes Center, Institute for Clinical and Experimental Medicine
institution IKEM
country CZ
cooperation
ARLID cav_un_auth*0331984
name University of Chemistry and Technology Prague
country CZ
cooperation
ARLID cav_un_auth*0336697
name Institute of Information Theory and Automation of the CAS
institution ÚTIA AV ČR
country CZ
cooperation
ARLID cav_un_auth*0336698
name Center of Experimental Medicine, Institute for Clinical and Experimental Medicine
institution IKEM
country CZ
mrcbC64 1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
confidential S
mrcbC86 3+4 Article Cell Tissue Engineering|Medicine Research Experimental|Transplantation
mrcbT16-e CELLTISSUEENGINEERING|MEDICINERESEARCHEXPERIMENTAL|TRANSPLANTATION
mrcbT16-j 0.769
mrcbT16-s 1.063
mrcbT16-4 Q1
mrcbT16-B 59.92
mrcbT16-D Q2
mrcbT16-E Q3
arlyear 2016
mrcbTft \nSoubory v repozitáři: schier-0465945.pdf
mrcbU14 85007086435 SCOPUS
mrcbU34 000390183200005 WOS
mrcbU56 PDF dokument
mrcbU63 cav_un_epca*0252393 Cell Transplantation 0963-6897 1555-3892 Roč. 25 č. 12 2016 2145 2156 Sage