bibtype J - Journal Article
ARLID 0466448
utime 20240103213049.2
mtime 20161206235959.9
SCOPUS 84997787314
WOS 000403462300006
DOI 10.1002/acs.2739
title (primary) (eng) Adaptive kernels in approximate filtering of state-space models
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0256772
ISSN 0890-6327
title International Journal of Adaptive Control and Signal Processing
volume_id 31
volume 6 (2017)
page_num 938-952
publisher
name Wiley
keyword filtering
keyword nonlinear filters
keyword Bayesian filtering
keyword sequential Monte Carlo
keyword approximate filtering
author (primary)
ARLID cav_un_auth*0242543
name1 Dedecius
name2 Kamil
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/AS/dedecius-0466448.pdf
cas_special
project
ARLID cav_un_auth*0303543
project_id GP14-06678P
agency GA ČR
country CZ
abstract (eng) Standard Bayesian algorithms used for online filtering of states of hidden Markov models from noisy measurements assume an accurate knowledge of the measurement model in the form of a conditional probability density function. However, this knowledge is often unreachable in practice, and the used models are more or less misspecified, or it is too complex, making the resulting models intractable. This paper focuses on these issues from the particle filtering perspective. It adopts the principles of the approximate Bayesian filtering, where the particle weights are based on the (dis)similarity of the true measurements and the pseudo-measurements obtained by plugging the state particles directly into the measurement equation. Specifically, a new robust method for online tuning of the weighting kernel is proposed.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 1
mrcbC52 4 A hod 4ah 20231122142047.6
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0265788
mrcbC64 1 Department of Adaptive Systems UTIA-B 10200 COMPUTER SCIENCE, THEORY & METHODS
confidential S
mrcbC86 3+4 Article Automation Control Systems|Engineering Electrical Electronic
mrcbC86 3+4 Article Automation Control Systems|Engineering Electrical Electronic
mrcbC86 3+4 Article Automation Control Systems|Engineering Electrical Electronic
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.638
mrcbT16-s 0.915
mrcbT16-B 49.11
mrcbT16-D Q3
mrcbT16-E Q1
arlyear 2017
mrcbTft \nSoubory v repozitáři: dedecius-0466448.pdf
mrcbU14 84997787314 SCOPUS
mrcbU24 PUBMED
mrcbU34 000403462300006 WOS
mrcbU63 cav_un_epca*0256772 International Journal of Adaptive Control and Signal Processing 0890-6327 1099-1115 Roč. 31 č. 6 2017 938 952 Wiley