bibtype C - Conference Paper (international conference)
ARLID 0467541
utime 20240103213205.2
mtime 20161219235959.9
SCOPUS 85019076115
WOS 000406771302004
DOI 10.1109/ICPR.2016.7899934
title (primary) (eng) Three-dimensional Gaussian Mixture Texture Model
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0467540
ISBN 978-1-5090-4846-5
title Proceedings of the 23rd International Conference on Pattern Recognition (ICPR)
page_num 2026-2031
publisher
place Piscataway
name IEEE
year 2016
keyword bidirectional texture function
keyword Gaussian mixture model
keyword texture modeling
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101100
name1 Havlíček
name2 Vojtěch
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/RO/haindl-0467541.pdf
cas_special
project
ARLID cav_un_auth*0303439
project_id GA14-10911S
agency GA ČR
country CZ
abstract (eng) Visual texture modeling based on multidimensional mathematical models is the prerequisite for both robust material recognition as well as for image restoration, compression or numerous physically correct virtual reality applications. A novel multispectral visual texture modeling method based on a descriptive, unusually complex, three-dimensional, spatial Gaussian mixture model is presented. Texture synthesis benefits from easy computation of arbitrary conditional distributions from the model. The model is inherently multispectral thus it does not suffer with the spectral quality compromises of the spectrally factorized alternative approaches. The model is especially well suited for multispectral textile textures and it can also describe the most advanced textural representation in the form of a bidirectional texture function (BTF).
action
ARLID cav_un_auth*0340495
name 23rd International Conference on Pattern Recognition ICPR 2016
dates 20161204
mrcbC20-s 20161208
place Cancún
country MX
RIV BD
reportyear 2017
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0266451
confidential S
article_num 1003
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence
arlyear 2016
mrcbU14 85019076115 SCOPUS
mrcbU24 PUBMED
mrcbU34 000406771302004 WOS
mrcbU63 cav_un_epca*0467540 Proceedings of the 23rd International Conference on Pattern Recognition (ICPR) 978-1-5090-4846-5 2026 2031 Piscataway IEEE 2016